
Structure/Structured/
Projectional Editors

CS294-184: Building User-Centered Programming Tools UC Berkeley Sarah E. Chasins
Structure Editors Week, Day 1

Quick facts before today’s
discussion

• CS performance is not bimodal
• Students who use projectional editors vs. textual editors perform

equivalently on tests of CS knowledge
• For novices to a given language (not necessarily to CS!), projectional

editors make users more productive

More on all of these in Thursday’s class, but we’ll have a more productive
discussion today if we go over these before we start chatting :)

Reading Reflection
Discuss in groups
• What do you think is the difference between a visual editor and a

projectional editor (if any)?
• Based on the videos:
• What kinds of errors are projectional editors preventing?
• What kinds of errors are projectional editors not preventing?
• If you’ve ever used a projectional editor (or a projectional editing

mode in a textual editor), what did you like or dislike about the
experience?

structure editor
==

structured editor
==

projectional editor

What’s happening inside my
compiler?

Assembly Language

Compiler

parser
 code generator

fun

square

num

return

×

num num

arg

int

int

What’s happening inside my
compiler?

Assembly Language

Compiler

parser
 code generator

fun

square

num

return

×

num num

arg

int

int

WHAT’S ALL THIS??

What’s happening inside my
compiler?

Assembly Language

Compiler

parser
 code generator

fun

square

num

return

×

num num

arg

int

int

AST

Abstract Syntax Tree (AST)

Compiler

fun

square

num

return

×

num num

arg

int

int

AST Abstract because we’re not putting in every detail of
the actual programming language syntax. (E.g., we’ve
dropped all those pesky semicolons and parens.)

Syntax because we’re representing the syntactic
structure of the code in question.

Tree because…well, obvious. But look, we got to
throw away a bunch of parens and other grouping
things because it’s all in the tree structure now!

Abstract Syntax Tree (AST)

Compiler

fun

square

num

return

×

num num

arg

int

int

AST Programs are data! We can mess with them!

…and we can build them up directly. We don’t
have to write in a textual programming
language and use a parser to recover this
structure.

Projectional Editor

An editor where you’re building up the AST directly.

People can argue about the meaning of “directly.” How far
does it have to be from the actual AST before it stops being a

projectional editor? But basically it’s just a judgment call.

Projectional isn’t a feature of
the programming language

It’s a feature of the programming environment!

Basically, it’s a matter of what editor we’re using to build up programs in
the language.

Python

…also Python

Programming Language vs.
Programming Environment

Both of those were Python—same language.

One editor was clearly textual, and one editor was clearly
visual.

One editor was (probably) non-projectional, and one editor
was clearly projectional.

Programming Language vs.
Programming Environment

Programming Language: For our purposes today, a code
generator that takes ASTs as input

Programming Environment: The tool or tools we use for
building up those ASTs

Programming Language vs.
Programming Environment

Why do people get this confused?

Probably just because there are some languages that have
only one interpreter, and the interpreter is embedded in a
custom visual editor. If no one has written a parser for a text-
based version of a given language, a visual environment may
be the only way to write programs in it.

Programming Language vs.
Programming Environment

Examples

Snap! : Both a programming language and a
paired programming environment

Scratch : Same deal, both a programming
language and a paired programming
environment

Blockly : A library for making programming
environments for whatever language you want

Projectional Editor vs. Visual Editor

Projectional Editor: Any editor (can be textual or visual) in
which we build up programs by interacting directly with ASTs

Visual Editor: Any editor (can be projectional or non-
projectional) in which we build programs by any means other
than typing text in a textbox

Visual but not
projectional

https://bubble.io/

build and run web applications without code

https://bubble.io/

Visual but not
projectional

Stagecast CreatorTM

allows adults and children as young as 8 to build

their own simulations and games

Vi
su

al
Te

xt
ua

l
Non-Projectional Projectional

+
paredit

syntax errors vs. logical errors

Before we switch to activity time…

Reminder to be working on final
projects!!!

Snap! Activity

https://snap.berkeley.edu/snap/snap.html

https://snap.berkeley.edu/snap/help/
SnapManual.pdf

https://snap.berkeley.edu/snap/snap.html
https://snap.berkeley.edu/snap/help/SnapManual.pdf
https://snap.berkeley.edu/snap/help/SnapManual.pdf

Snap! Activity
We’re about to build some small extensions to a language that has a single interpreter that
lives in a projectional editor.

Notes:

• This isn’t usually how people implement languages (even for languages intended to be
used in projectional editors).

• However! It gives us a 2 birds 1 stone thing—we can experience using a projectional editor
and building abstractions for use in a projectional editor at the same time!

• Intentionally slightly less directed than our usual activities, in hopes y’all will explore the
Snap! landscape a bit.

Snap! Activity
• One tip before we get started.

• This seems like it shouldn’t matter, but it can get annoying,
and no one ever figures it out themselves… If you end up
with a “variable watcher” in the “stage” (white box in upper
right) that you don’t want to show anymore, and you can’t
get rid of it, drag it to the toolbox on the left that shows all
the available blocks.

Snap! Activity - Stage 1

Snap! Activity - Stage 2

Snap! Activity - Stage 3

Reflection
• Was implementing database abstractions a difficult

programming task? Hum for frustration level.
• I’m so sorry. I know it’s wildly frustrating

• If you’re designing a new language, does putting it in a
block-based editor automatically make it easy?

• Does getting out of syntax errors mean that you’re not
programming?

• It’s probably been a while since you were a newcomer to
programming, but this may have simulated some of that
experience. If you’re designing for newcomers in your
final project, or for people who are uncomfortable doing
the particular kind of programming for which you’re
designing, does this raise anything for you?

Snap! Activity - Stage 4

HW Assignment
Note: Doesn’t have to be in Snap!

(And don’t worry, just because we’re starting HW already
doesn’t mean we’re done with structure editors!)

