
Synthesis

CS294-184: Building User-Centered Programming Tools UC Berkeley Sarah E. Chasins
Program Synthesis Week 1, Day 1

Reading Reflection
Discuss in groups
• If you could express your intent to the computer in any way at all, how

would you want to write programs?
• What input would you have the computer take?
• How would the interaction between you and the computer work?

• What was confusing about synthesis from the first reading/your
understanding of synthesis so far?
• It’s ok if this is lots of things! We’ll be getting hands-on soon, which

should clear up a lot of confusions. :)
• Are there applications that you’d expect are amenable to synthesis but

that haven’t made it into the literature yet? (Weren’t mentioned in
Chapter 2.)

Reading Key Takeaways
• The core challenges in synthesis:
• Scalability/size of the program space
• Capturing user intent—What’s a good spec? How do we get it?

• The variety of plausible specs we can get from users
• I/O examples, demonstrations, logical specs, natural language,

programs with holes, equivalent programs (!)
• The variety of search techniques
• Enumerative, constraint-based, deductive, statistical
• And at a higher level, the fact that synthesis is not just one technique

• A general sense of the problems to which synthesis has been applied
so far

Thank you for your survey
answers!

Why synthesis?

People doing HCI
stuff…

Synthesis

There are a few PL techniques
that just keep coming up in
HCI tasks!
• Program synthesis
• Projection/Structure editors
• Program slicing
Others come up, but these
seem to come up all the time.

Demo time

FlashFill
Do you have Excel installed? You can probably run this demo on your own

laptop while I run it on mine!

Automating String Processing in Spreadsheets using Input-Output Examples, Sumit Gulwani

CTRL + E

Scythe
To run this one, head to: https://scythe.cs.washington.edu/demo

Synthesizing Highly Expressive SQL Queries from Input-Output Examples, Chenglong Wang

https://scythe.cs.washington.edu/demo

Helena
If you want to run this one, you have to install an extension:

http://helena-lang.org/install

Rousillon: Scraping Distributed Hierarchical Web Data, me & my collaborators :)

http://helena-lang.org/install

We open the browser
extension.

We demonstrate how to find
information that goes in the first
row of our target dataset.

We continue on another
page (and another table).

We’re done demonstrating.

The synthesizer writes
our program.

The program collects our data.

18

LENS

I know, I know, not as photogenic, but it
makes programs much faster!!

Scaling up Superoptimization, Phitchaya Mangpo Phothilimthana

Falx
https://falx.cs.washington.edu/tool

Visualization by Example, Chenglong Wang

5 min break

Back up. What’s program
synthesis?

Find a program P that meets a spec ϕ(input, output):

∃P.∀x.ϕ(x,P(x))

• When to use synthesis:

• Ease-of-use/productivity: When writing ϕ is faster or easier
than writing P

• Correctness: when proving ϕ is easier than proving P

Find P

Correctness Condition

Hey, I’ve seen this before

compilation ?

I give computer a high-level
description of what I want it to do

Computer gives me back a low-
level program for doing it

Synthesis vs. compilation

SynthesisCompilation

Searches a space of
possible programs

…or sometimes a space of
possible sequences of

rewrite rules! look, the line
is blurry ¯_(ツ)_/¯

If it involves search, we
usually call it synthesis

Typically deterministic

Typically performs lowering
via a sequence of rewrite

rules

Even if you don’t take away anything else from
today’s lecture, take away that you can write a

synthesizer!

Even if you don’t take away anything else from
today’s lecture, take away that you can write a

synthesizer!

with…

Enumeration

What do we need to decide to
make a synthesizer?

Hint: 3 things

How does the user express what they want the program to do?

What space of programs is the synthesizer allowed to use?

What algorithm will the synthesizer use to search that space?

What do we need to decide to
make a synthesizer?

Hint: 3 things

How does the user express what they want the program to do?

What space of programs is the synthesizer allowed to use?

What algorithm will the synthesizer use to search that space?

For today’s sample synthesizer, let’s pick…

Input-Output examples

Anything in a Domain-Specific Language (DSL) of our choice

Enumeration Which is to say…generating programs until we find one that works

Input-Output Examples
• Any work here?

• Nah, this is going to be pretty straightforward.

• Example:

({“x” → 3, “y" → 7}, 23)

({“x" → 4, “y" → 4}, 19)

({“x" → 2, “y" → 12}, 31)

Can you guess it?? Did you already
synthesize this in your head?

Domain-Specific Language

• This one’s a classic, but for another domain we might
design something more customized

expr := N
 | v
 | (expr + expr)
 | (expr - expr)
 | (expr * expr)

Enumeration

Spec:
({“x” → 3, “y" → 7}, 23)
({“x" → 4, “y" → 4}, 19)
({“x" → 2, “y" → 12}, 31)

Space of programs:
expr := N
 | v
 | (expr + expr)
 | (expr - expr)
 | (expr * expr)

level 0:
[0, 1, 2, 3, 4, y, x]
count: 7

level 2 :
[0, 1, 2, 3, 4, y, x, (0+0), (0*0), (0-0), (0+1), (0*1), (0-1), (0+2), (0*2),
(0-2), (0+3), (0*3), (0-3), (0+4), (0*4), (0-4), (0+y), (0*y), (0-y), (0+x), (0*x),
(0-x), (1+0), (1*0), (1-0), (1+1), (1*1), (1-1), (1+2), (1*2), (1-2), (1+3), (1*3),
(1-3), (1+4), (1*4), (1-4), (1+y), (1*y), (1-y), (1+x), (1*x), (1-x), (2+0), (2*0),
(2-0), (2+1), (2*1), (2-1), (2+2), (2*2), (2-2), (2+3), (2*3), (2-3), (2+4), (2*4),
(2-4), (2+y), (2*y), (2-y), (2+x), (2*x), (2-x), (3+0), (3*0), (3-0), (3+1), (3*1),
(3-1), (3+2), (3*2), (3-2), (3+3), (3*3), (3-3), (3+4), (3*4), (3-4), (3+y), (3*y),
(3-y), (3+x), (3*x), (3-x), (4+0), (4*0), (4-0), (4+1), (4*1), (4-1), (4+2), (4*2),
(4-2), (4+3), (4*3), (4-3), (4+4), (4*4), (4-4), (4+y), (4*y), (4-y), (4+x), (4*x),
(4-x), (y+0), (y*0), (y-0), (y+1), (y*1), (y-1), (y+2), (y*2), (y-2), (y+3), (y*3),
(y-3), (y+4), (y*4), (y-4), (y+y), (y*y), (y-y), (y+x), (y*x), (y-x), (x+0), (x*0),
(x-0), (x+1), (x*1), (x-1), (x+2), (x*2), (x-2), (x+3), (x*3), (x-3), (x+4), (x*4),
(x-4), (x+y), (x*y), (x-y), (x+x), (x*x), (x-x), (0+0), (0*0), (0-0), (0+1), (0*1),
(0-1), (0+2), (0*2), (0-2), (0+3), (0*3), (0-3), (0+4), (0*4), (0-4), (0+y), (0*y),

level 1 :
[0, 1, 2, 3, 4, y, x, (0+0), (0*0), (0-0), (0+1), (0*1), (0-1), (0+2), (0*2), (0-2),
(0+3), (0*3), (0-3), (0+4), (0*4), (0-4), (0+y), (0*y), (0-y), (0+x), (0*x), (0-x),
(1+0), (1*0), (1-0), (1+1), (1*1), (1-1), (1+2), (1*2), (1-2), (1+3), (1*3), (1-3),
(1+4), (1*4), (1-4), (1+y), (1*y), (1-y), (1+x), (1*x), (1-x), (2+0), (2*0), (2-0),
(2+1), (2*1), (2-1), (2+2), (2*2), (2-2), (2+3), (2*3), (2-3), (2+4), (2*4), (2-4),
(2+y), (2*y), (2-y), (2+x), (2*x), (2-x), (3+0), (3*0), (3-0), (3+1), (3*1), (3-1),
(3+2), (3*2), (3-2), (3+3), (3*3), (3-3), (3+4), (3*4), (3-4), (3+y), (3*y), (3-y),
(3+x), (3*x), (3-x), (4+0), (4*0), (4-0), (4+1), (4*1), (4-1), (4+2), (4*2), (4-2),
(4+3), (4*3), (4-3), (4+4), (4*4), (4-4), (4+y), (4*y), (4-y), (4+x), (4*x), (4-x),
(y+0), (y*0), (y-0), (y+1), (y*1), (y-1), (y+2), (y*2), (y-2), (y+3), (y*3), (y-3),
(y+4), (y*4), (y-4), (y+y), (y*y), (y-y), (y+x), (y*x), (y-x), (x+0), (x*0), (x-0),
(x+1), (x*1), (x-1), (x+2), (x*2), (x-2), (x+3), (x*3), (x-3), (x+4), (x*4), (x-4),
(x+y), (x*y), (x-y), (x+x), (x*x), (x-x)]
count: 154

Ok, no luck so far. Let’s just mash these
together! In every possible combination!

Hm, still no luck. Keep mashing.

count: 71,302

Enumeration…pruned with Operational
Equivalence

Spec:
({“x” → 3, “y" → 7}, 23)
({“x" → 4, “y" → 4}, 19)
({“x" → 2, “y" → 12}, 31)

Space of programs:
expr := N
 | v
 | (expr + expr)
 | (expr - expr)
 | (expr * expr)

level 0:
[0, 1, 2, 3, 4, y, x]
count: 7

level 1 :
[0, 1, 2, 3, 4, y, x, (0+0), (0*0), (0-0), (0+1), (0*1), (0-1), (0+2), (0*2), (0-2),
(0+3), (0*3), (0-3), (0+4), (0*4), (0-4), (0+y), (0*y), (0-y), (0+x), (0*x), (0-x),
(1+0), (1*0), (1-0), (1+1), (1*1), (1-1), (1+2), (1*2), (1-2), (1+3), (1*3), (1-3),
(1+4), (1*4), (1-4), (1+y), (1*y), (1-y), (1+x), (1*x), (1-x), (2+0), (2*0), (2-0),
(2+1), (2*1), (2-1), (2+2), (2*2), (2-2), (2+3), (2*3), (2-3), (2+4), (2*4), (2-4),
(2+y), (2*y), (2-y), (2+x), (2*x), (2-x), (3+0), (3*0), (3-0), (3+1), (3*1), (3-1),
(3+2), (3*2), (3-2), (3+3), (3*3), (3-3), (3+4), (3*4), (3-4), (3+y), (3*y), (3-y),
(3+x), (3*x), (3-x), (4+0), (4*0), (4-0), (4+1), (4*1), (4-1), (4+2), (4*2), (4-2),
(4+3), (4*3), (4-3), (4+4), (4*4), (4-4), (4+y), (4*y), (4-y), (4+x), (4*x), (4-x),
(y+0), (y*0), (y-0), (y+1), (y*1), (y-1), (y+2), (y*2), (y-2), (y+3), (y*3), (y-3),
(y+4), (y*4), (y-4), (y+y), (y*y), (y-y), (y+x), (y*x), (y-x), (x+0), (x*0), (x-0),
(x+1), (x*1), (x-1), (x+2), (x*2), (x-2), (x+3), (x*3), (x-3), (x+4), (x*4), (x-4),
(x+y), (x*y), (x-y), (x+x), (x*x), (x-x)]
count: 154

←Which is the fancy program synthesis way of
saying “they do the same thing on the inputs
we care about.”

Ok, these are all just 0…which we already
have. Why’d you give me these???

And these are the same on all inputs.
And eventually we’ll find some that aren’t the same on all inputs, but are
the same on {“x” → 3, “y" → 7}, {“x" → 4, “y" → 4}, and {“x" → 2, “y" → 12}

This is exactly as simple as it looks. Seriously, you can write
this synthesizer in vanilla Python in one page. Let’s see it!

This one isn’t pruning at all.
What do we do to prune with OE?

Just an extra 6 lines!

Pruning based on Operational
Equivalence can cut down our

search space dramatically!

And this is just at level 2!

So if you’re ever watching a synthesis talk and get
confused…just remember enumeration. At a

sufficiently high level of abstraction, it’s just going
through programs until it finds one that works.

We can make enumeration smarter
• Doesn’t have to be just start with the smallest program, then list all the programs in

order of size until you find one that works
• We can have heuristics or language models that let us explore better/likelier

programs first instead of smaller programs first
• There are other ways of pruning (other than Operational Equivalence) that let us cut

out much more of the space
• We can make smart choices about what constants to include
• This was the easy-to-write version, but there are many ways to make it more effective
• For a long time, the winner of the SyGuS competition (the primary competition for

people who write synthesizers) was an enumerative solver!
• This is a real technique!

Quick brainstorm. What would
you like to synthesize?

Synthesis is like a buffet
• This is not one technique that either applies or doesn’t apply to

your problem

• It’s a whole family of techniques

• Tackling a new problem, you’ll probably be looking through a
host of existing approaches and tools…

• If you read synth literature, you’ll see very different domains
formalized in very different ways. This isn’t accidental!

• …and maybe inventing your own. Custom synthesizers are still
common

Enumerative
synthesis

Stochastic
synthesis

Deductive
synthesis

Constraint-
based

synthesis

To think about for next reading

• The issue of ambiguous specs. As designers of usable
tools, do we want to prevent ambiguous specs? If yes,
how? Do we want to allow them? If yes, how does this
affect our synthesizer?

• What constrains the design of a our target languages for
synthesis?

• What’s the tradeoff between designing for making the
synthesizer’s task easier vs. designing for the user of the
tool?

Please install before next class

https://docs.racket-lang.org/rosette-guide/ch_getting-started.html#%28part._sec~3aget%29

A brilliant language from
Emina Torlak

