Synthesis

CS294-184: Building User-Centered Programming Tools UC Berkeley Sarah E. Chasins

Program Synthesis Week 1, Day 1

Reading Reflection

Discuss in groups

® |[f you could express your intent to the computer in any way at all, how
would you want to write programs?
® \WVhat input would you have the computer take?
® How would the interaction between you and the computer work?

® \What was confusing about synthesis from the first reading/your
understanding of synthesis so far?
® |[t's ok if this is lots of things! We'll be getting hands-on soon, which

should clear up a lot of contfusions. :)
® Are there applications that you'd expect are amenable to synthesis but

that haven’t made it into the literature yet? (Weren't mentioned in
Chapter 2.)

Reading Key Takeaways

® The core challenges in synthesis:
® Scalability/size of the program space
® Capturing user intent—What's a good spec? How do we get it?
® The variety of plausible specs we can get from users
® |/O examples, demonstrations, logical specs, natural language,
programs with holes, equivalent programs (!)
® The variety of search techniques
® Enumerative, constraint-based, deductive, statistical
® And at a higher level, the fact that synthesis is not just one technique
® A general sense of the problems to which synthesis has been applied
so far

Thank you for your survey
answers!

Why synthesis?

’ - P‘ RICY)
4 | &
L)
. ’ ‘ ; ' !

There are a few PL techniques

that just keep coming up in

HCI tasks!
o f?‘f ® Program synthesis
- e M‘ o Projection/.S’.cructure editors
stuff... . o e ® Program slicing
L aRaer o Others come up, but these

Synthesis seem to come up all the time.

Demo time

FlashFill

Do you have Excel installed? You can probably run this demo on your own
laptop while | run it on mine!

Automating String Processing in Spreadsheets using Input-Output Examples, Sumit Gulwani

4)
H

A

Whole Name

Alvin Cheung
Armando Fox
Jonathan Ragan-Kelley
Koushik Sen

Sanijit A. Seshia
Katherine A. Yelick

B2 : fx Prof. Cheung B3
A B
1 Whole Name 1
2 |Alvin Cheung | Prof. Cheung _| 2
3 Armando Fox 3
4 Jonathan Ragan-Kelley 4
5 Koushik Sen S5
6 Sanjit A. Seshia 6
7 Katherine A. Yelick //
o 8

B

Prof. Name

Prof. Cheung

|Prof. Fox _|
Prof. Kelley

Prof. Sen

Prof. Seshia

Prof. Yelick

- 4
;,/

Scythe
To run this one, head to: https://scythe.cs.washington.edu/demo

Synthesizing Highly Expressive SQL Queries from Input-Output Examples, Chenglong Wang

https://scythe.cs.washington.edu/demo

’ C qw { - J : H ome D emo

© Click the Synthesis button to synthesize Queries from the example!

<+ Empty Panel = Remove Panel Load An Example Panel v § Connect to Database ~ Offline (No backend DB connected)

A Example Task: Find the span of career peak (the year when the first paper and most cited papers are published) of computer scientists given the list of their pushlished papers.

t2.author) As tl1 Join
papers As t8)) As t7
Where t7.max_citation = t7.citation
And t7.author = t7.authorl) As t4)) As t6
Where t6.author = t6.authorl;

Synthesize Synthesized Query 1~ = RunonDB @ Visualize @~

<4 Add Table = Remove Table

papers output
author title year citation author min_year peak_year S::z:‘t t6.author,t6.min_year, t6.year
H. Simon Understanding wi 1974 2rt X E H. Simon 1974 1997 X (Select t5.author, t5.min_year, t4.author As authorl, t4.year
H. Simon Organization 1997 20057 X . R. Tibshirar 1995 1995 X From ((Select
H. Simon The sciences of tl 1996 17561 X f P. Bork 1998 1998 X t3.author, Min(t3.year) As min_year
R. Tibshirani Developmental re 2004 50 X Add Row ' Add Col | Del Col rrom
o e . : . : papers As t3
R. Tibshirani Flexible discrimin 1995 51 X :
. Group By
R. Tibshirani IRF9 and STAT1 ¢ 2008 47 X | t3.author) As t5 Join
P. Bork Automated pair-w 1998 51 X (Select t7.author,t7.year
P. Bork UN targets top kil 2011 19 x| From
' (Select tl.author, tl.max_citation, t8.author As authorl, t8.ti
Add Row @ Add Col Del Col : : :
: tle, t8.year, t8.citation
Constants @ None ? E From ((Select
: t2.author, Max(t2.citation) As max_citation
: From
Aggregators = (Optional) ? | papers As t2
| Group By
|

Helena
If you want to run this one, you have to install an extension:
http://helena-lang.org/install

Rousillon: Scraping Distributed Hierarchical Web Data, me & my collaborators :)

http://helena-lang.org/install

O O & Profiles

¢« > C

=== Apps 9 Extensions

Google Scholar

Profiles

X

label:computer_science

-+

@ scholar.google.com/citations?hl=en&view_op=search_authors&mauthors=Ilabel%3Acomputer_science&btnG=

Geoffrey Hinton

Emeritus Prof. Comp Sci, U.Toronto & Engineering Fellow, Google
Verified email at cs.toronto.edu

machine learning psychology artificial intelligence cognitive science
computer science

David S. Johnson

Visiting Professor, Columbia University Computer Science Department
Verified email at research.att.com

Algorithms computer science optimization traveling salesman problem bin packing

David Haussler

Scientific Director, UC Santa Cruz Genomics Institute, University of California, Santa
Cruz
Verified email at soe.ucsc.edu

genomics computer science molecular biology evolution cancer

Freeman Hu

Shandong University
Verified email at mail.sdu.edu.cn

Computer Science

vapnik

Professor of Columbia, Fellow of NEC Labs America,
Verified email at nec-labs.com

machine learning statistics computer science

We open the browser

extension.

Cited by 238863

Cited by 216544

Cited by 215347

Cited by 212828

w 0 » @ O

Helena Scraper and Automator
Has access to this site

SIGN IN

@ ® & profiles X 4

Current Script Saved Scripts Scheduled Runs
C & scholar.google.com/citations?hl=en&view_op=search_authors&mauthors=la.. Y& [E] M 6 (4

We're recording! Remember, collect ONLY the FIRST ROW of data. When 0
you're ready to add a new cell, hover over the text you want, then press c | :i: Apps M Extensions
ALT | + click. We'll show the data you've collected right here: ance
Recording
— label:computer_science n

Collect the FIRST ROW of your & Profiles
target dataset.

Geoffrey Hinton Cited by 362360

Geoffrey Hinton).Toronto & Engineering Fellow, Google
verimea-emai-atcs:toronto.ed

machine learning psychology artifici\\ntelligence cognitive science computer science

David S. Johnson Cited by 238863

" \We demonstrate how to find
® information that goes in the first

Sciéd

M row of our target dataset.

6544

Freeman Hu Cited by 215347

Shandong University
Verified email at mail.sdu.edu.cn

Computer Science

vapnik Cited by 212828

Professor of Columbia, Fellow of NEC Labs America,
Verified email at nec-labs.com

machine learning statistics computer science

Joerg Meyer Cited by 185932

chrome-extension://bcajeffgcbmkndhonbkfmahpckenfoib/pages/mainpanel.html?start...

1 @O @® @ Pprofiles X 4 Geoffrey Hinton - Google Schc X 4

Current Script Saved Scripts Scheduled Runs J

& > (C @& scholar.google.com/citations?hl=en&user=JicYPdAAAAAJ w B » @ (4]
We're recording! Remember, collect ONLY the FIRST ROW of data. When o .
you're ready to add a new cell, hover over the text you want, then press c | 2. Apps M Extensions
+ click. We'll show the data you've collected right here: ance

Recording
= Google Scholar Q.

Geoffrey Hinton

Geoffrey Hinton

Emeritus Prof. Comp Sci, U.Toronto & Engineering Fellow, Google
Verified email at cs.toronto.edu - Homepage

machine learning psychology artificial intelligence cognitive science computer science

ARTICLES CITEDBY CO-AUTHORS

Stop Recording TITLE CITEDBY YEAR

v 66206 = N
28294 | R
We continue on another
26773 1986
page (and another table).
R |
|

® ® chrome-extension://bcajeffgcbmkndhonbkfmahpckenfoib/pages/mainpanel.htmi?start...

® Pprofiles X ® Geoffrey Hinton - Google Schc X -+

Current Script Saved Scripts Scheduled Runs
& scholar.google.com/citations?hl=en&user=JicYPdAAAAAJ w [» @ (4

We're recording! Remember, collect ONLY the FIRST ROW of data. When 0
you're ready to add a new cell, hover over the text you want, then press

ALT | + click. We'll show the data you've collected right here:

=== Apps J Extensions
Cancel

Recording

= Google Scholar Q

Geoffrey Hinton

Emeritus Prof. Comp Sci, U.Toronto & Engineering Fellow, Google
Verified email at cs.toronto.edu - Homepage

Geoffrey Hinton Imagenet classification with deep convolutional neural networks

66206 2012

machine learning psychology artificial intelligence cognitive science computer science

ARTICLES CITEDBY CO-AUTHORS

TITLE CITED BY YEAR

Stop Recording

Imagenet classification with deep convolutional neural networks 66206 2012
A Krizhevsky, | Sutskever, GE Hinton
Advances in neural information processing systems, 1097-1105

Deep learning 28294 2015
: ' meanio, G Hinton
), 436-444

We're done demonstrating.
nal representations by error-propagation 26773 1986

DE Rumelnart, GE Hinton, RJ Williams
Parallel Distributed Processing: Explorations in the Microstructure of ...

Learning internal representations by error propagation 26468 1986
DE Rumelhart, GE Hinton, RJ Wlliams
Learning internal representations by error propagation

Learning internal representations by error propagation e 1986
DE Rumelhart, GE Hinton, RJ Williams
MIT Press, Cambridge, MA 1 (318)

olb/pages/mainpanel.html?start...

®@ O New Recording Window X | & Pprofiles X @ Geoffrey Hinton - Google Sc X <+
Current Script Saved Scripts Scheduled Runs

C' & scholar.google.com/citations?hl=en&user=JicYPdAAAAAJ w [» 9 (4]
Save and Run Script ! Apps Y Extensions
program_name Save Script
» Advanced Options — GO gle Scholar O\

Start New Script

text Geoffrey Hinton
L=l https://scholar.google.com/citations?hl=en&view._...

numbers -' Emeritus Prof. Comp Sci, U.Toronto & Engineering Fellow, Google

other list_1 ./ page1 \ 2 Verified email at cs.toronto.edu - Homepage

{ Sl list_1_item_1 11 pagel ~

Click [CRE %D in 3B , load page into 2220
list_3 page2 v

ST title FTl page?2 - | ARTICLES CITEDBY CO-AUTHORS

scrape [ZIELNOD

machine learning psychology artificial intelligence cognitive science computer science

In

- : TITLE ITEDBY YEAR
o211 year [page2 - ¢
| .
add dataset row that includes: ([ESMNEEINED 0= | ey . :
N ‘ : W Imagenet classification with deep convolutional neural networks 66206 2012
— - A Krizhevsky, | Sutskever, GE Hinton
- | Advances in neural information processing systems, 1097-1105

28294 2015

The synthesizer writes
our prOg ram. s by error-propagation 26773 1986

ations in the Microstructure of ...

Learning internal representations by error propagation 26468 1986
DE Rumelhart, GE Hinton, RJ Wlliams

» Relevant Tables Learning internal representations by error propagation

Learning internal representations by error propagation e 1986
Troubleshooting DE Rumelhart, GE Hinton, RJ Williams

What kind of problem are you having? MIT Press, Cambridge, MA 1 (318)

® @ B} New Recording Window X | ® Profiles X 4 David Haussler - Google Sc/' X +

Current Script Saved Scripts Scheduled Runs Script Run 1
C & scholar.google.com/citations?hl=en&user=S20jOvYAAAAJ w B *» 9 (4
Pause Script Restart From Beginning Cancel Script Run 2 Apps P Extensions
Download Data (This Scrape) Download Data (All Scrapes)
Note: the downloaded dataset may be slightly out of date if we haven't saved all data yet. Tﬂs @ge bg!ﬂgﬁﬂntm"ed by Helena'
Rows so far: 40 If you want to interact with this page anyway, click here to remove the overlay. Keep in mind that navigating away from the current page may
disrupt the Helena process.
Geoffrey Imagenet classification with deep convolutional neural networks 66206 2012 1
Hinton David Haussler FOLLOW
Geoffrey . ep learning 28294 2015 2
Hinton Scientific Director, UC Santa Cruz Genomics Institute, University of California,
a?rc\)tf;:‘ey Learning internal representations by error-propagation 26773 1986 3 Santa Cruz
Cooff Verified email at soe.ucsc.edu
eotirey Learning internal representations by error propagation 26468 1986 4
Hinton genomics computer science molecular biology evolution cancer
S“erifg:‘ey Learning internal representations by error propagation 26422 1986 5
Geoffrey . . by back .
Hinton Learning representations by back-propagating errors 21859 1986 6 ARTICLES CITED BY
E”e:tf;;ey Dropout: a simple way to prevent neural networks from overfitting 21365 2014 7
Geoffre TITLE CITED BY YEAR
. Y Visualizing data using t-SNE 14439 2008 8
Hinton
flf’r:’tf;:‘ey A fast learning algorithm for deep belief nets 13397 2006 9 Initial sequencing and analysis of the human genome 19484 2001
Geoff ES Lander, LM Linton, B Birren, C Nusbaum, MC Zody, J Baldwin, ...
H(iar(\)to;\ey Reducing the dimensionality of data with neural networks 12573 2006 10 Macmillan Publishers Ltd.
a?rif;:‘ey Rectified linear units improve restricted boltzmann machines 10069 2010 T1 _ _ _ *
, o ——— An integrated encyclopedia of DNA elements in the human genome 10539 2012
Gealfrey Deep hewral networs (or coustic modeing inspesch recognition'The gyz3 a1 12| ENCODE Project Consortium
o grovp Nature 489 (7414), 57-74
Hiergco;ey Learning multiple layers of features from tiny images 8034 2009 13
-
ﬁgotffrey Speech recognition with deep recurrent neural networks 5975 2013 14 g human genome browser at UCSC 8020 2002
'nton WJ KEMCW Sugnet, TS Furey, KM Roskin, TH Pringle, AM Zahler, ...
Ggoffrey Improving neural networks by preventing co-adaptation of feature 5208 2012 15 Genome redarch 12 (6), 996-1006
Hinton detectors
Geoffrey i . . .
. Training products of experts by minimizing contrastive divergence 4574 2002 16 e) .)
Hinton Initial sequencing and comparative analysis of the mouse genome 7069 2002
Geoffrey Adaptive mixtures of local experts
Hinton P P
(:I?rif;;ey A learning algorithm for Boltzrnann machines Th e p rog ra I I I CO I I eCtS O u r d ata °

Geoffrey Lecture 6.5-rmsprop: Divide the gradient by a running average of its rece
Hinton magnitude

Geoffrey
Hinton

uencing 7053 2010

1000 Genomes Projet Consortium

Distilling the knowledge in a neural network 3887 2015 20 Nature 467 (7319), 1061

® © ® 9 Extensions X g Profiles X 4+

< 2> C @ https://scholar.google.com/citations?hl=en&view_op=search_authors&mauthors=label%3Acomputer_science&btnG= * O y
i Apps % Extensions \ BES Other Bookmarks
= (Google Scholar label:computer science B g

® Profiles @ Myprofile Y My library

Emeritus Prof. Comp Sci, U.Toronto & Engineering Fellow, Google

!
Geoffrey Hinton Cited by 246012
Verified email at cs.toronto.edu

machine learning neural networks artificial intelligence cognitive science
computer science

DEYWIS MORENO Cited by 206009

High Energy Physicist, Universidad Antonio Narino
Verified email at uan.edu.co

High Energy Physics Computer science

David S. Johnson Cited by 176731

B, Visiting Professor, Columbia University Computer Science Department
"~ Verified email at research.att.com

Algorithms computer science optimization traveling salesman problem bin packing

David Haussler Cited by 174202

Scientific Director, UC Santa Cruz Genomics Institute, University of California, Santa
Cruz
Verified email at soe.ucsc.edu

genomics computer science molecular biology evolution cancer

18
L. vapnik Cited by 170728

LENS

before after
cmp rl, #0
add 12, e, 87 asr 13, rl, #2
mov r3’ r3’ 1sr #29 add r2’ rl, r3, lsr #29
movge r2, rl, ldrb ro’ [ro’ r2, asXy #3]
ldrb 1r0, [r0, r2, asr #3] and r3, r2, #2438
; sub r3, rl, r3
bic rl, r2, #248
asr rli, r0O, r3
sub r3, rl, r3
and r0, rl1, #1
asr rl, rO, r3
and rO, rl1, #1
(b) (c)

| know, | know, not as photogenic, but it

makes programs much faster!!

Scaling up Superoptimization, Phitchaya Mangpo Phothilimthana

Falx
https://falx.cs.washington.edu/tool

Visualization by Example, Chenglong Wang

5 min break

Back up. What's program
synthesis?

Find a program P that meets a spec $(input, output):

Correctness Condition

/ \
IP.vx.P(x,P(x))

\ Find P

® \When to use synthesis:

® Ease-of-use/productivity: When writing ¢ is faster or easier
than writing P

® Correctness: when proving ¢ is easier than proving P

Hey, I've seen this betore

| give computer a high-level Computer gives me back a low-
description of what | want it to do level program for doing it

Isithis] compilation ?

Synthesis vs. compilation

Compilation

Typically deterministic

Typically performs lowering
via a sequence of rewrite
rules

Synthesis

Searches a space of
possible programs

...or sometimes a space of
possible sequences of
rewrite rules! look, the line

is blurry _(*V)_/

If it involves search, we
usually call it synthesis

Even if you don't take away anything else from
today’s lecture, take away that you can write a
synthesizer!

Even if you don't take away anything else from
today’s lecture, take away that you can write a
synthesizer!

What do we need to decide to
make a synthesizer?

Hint: 3 things

How does the user express what they want the program to do?
What space of programs is the synthesizer allowed to use?

What algorithm will the synthesizer use to search that space?

What do we need to decide to
make a synthesizer?

Hint: 3 things For today’s sample synthesizer, let’s pick...

How does the user express what they want the program to do?

Input-Output examples

What space of programs is the synthesizer allowed to use?

Anything in a Domain-Specific Language (DSL) of our choice
What algorithm will the synthesizer use to search that space?

S EnUmeration Which is to say...generating programs until we find one that works

o i
o NS i
el
R R e 2
PR -
TWE Wi g o}

Input-Output Examples

® Any work here?

® Nah, this is going to be pretty straightforward.

® Example:
({“X” N 3’ “yn R 7}, 23)
({“x" o 4, “y" - 4}, 19) Can you guess it?? Did you already

synthesize this in your head?

({\\X" N 2, \\y" R 12}, 31)

Domain-Specitic Language

® This one’s a classic, but for another domain we might
design something more customized

expr .= N
v
(expr + expr)

(expr - expr)
(expr * expr)

Enumeration

level O:
[OI 1' 2' 3'
count: 7

Ok, no luck so far. Let’s just mash these

4, ¥, X] . . .
; together! In every possible combination!

level 1 :

Spec:
({ V\><//
(\\><" N 41,
({ \\><"

V\Ef" R '7 } ,
V\Ef" R 14 } ,
V\BZ" R]-;2 } ,

l

Space of programs:
N

eXpr .=

23)
19)
31)

[0, 1,

2,

3,

4, vy, x, (0+0), (0*0),

(o_o)l

(0+3)r (0*3)1 (0_3)1 (0+4)l (0*4)1 (0_4)1
(1*0), (1_0)1 (1+1)l (1*1)1 (1_1)1
(1*4)1 (1_4)1 (1+Y)l (1*Y)l (1_Y)l
(2*1)1 (2_1)1 (2+2)l (2*2)1 (2_2)1
(Z*Y)r (Z_Y)l (2+x)l (z*x)l (z_x)l
(3*2)1 (3_2)1 (3+3)l (3*3)1 (3_3)1
(3*X), (3_x)l (4+0)l (4*0)1 (4_0)1
(4*3)1 (4_3)1 (4+4)l (4*4)1 (4_4)1
(Y*o)r (Y_O)l (Y+1)l (Y*l)l (Y_l)l
(v*4), (y-4), (yty), (¥y*y), (¥-Y),
(X*l), (x_l)l (X+2)l (X*z)l (x_z)l
(x*y), (x-y), (x+x), (x*Xx), (x-X)]

(140),
(1+4),
(2+1),
(2+y),
(3+2),
(3+x),
(4+3),
(y+0),
(yt+4),
(x+1),

(x+y),
count:

154

(0+1),

(0+y),
(1+2),

(1+x),
(2+3),
(3+0),
(3+4),
(4+1),

(4+y),
(y+2),

(y+x),
(x+3),

(0*1),

(0*y),
(1*2),
(1*x),
(2*3),
(3*0),
(3*4),
(4*1),
(4*y),
(y*2),
(Y*x),
(x*3),

(0_1)1

(O_Y)r
(1_2)1
(1—X),
(2_3)1
(3_0)1
(3_4)1
(4_1)1
(4_Y)r
(Y‘z)r
(Y‘x)r
(X—3),

(O+2)I (0*2)1 (0_2)1

(0+x),
(1+3),
(2+0),
(2+4),
(3+1),
(3+y),
(4+2),
(4+x),
(y+3),
(x+0),
(x+4),

(0*x),
(1*3),
(2*0),
(2*4),
(3*1),
(3*yY),
(4*2),
(4*x),
(y*3),
(x*0),
(x*4),

(O_x)l
(1_3)1
(2_0)1
(2_4)1
(3_1)1
(3_Y)I
(4_2)1
(4_x)l
(Y‘3)l
(x_o)l
(x_4)l

Hm, still no luck. Keep mashing.
level 2 :

[or lr 2/ 3r 4! Y, X, (0+0)r (0*0), (o_o)l (0+1)l (0*1)1 (0_1)1
(0_2)1 (0+3)r (0*3)1 (0_3)1 (0+4)r (0*4)1 (0_4)1 (0+Y)l (O*Y)I
(0-x), (1+0), (1*0), (1-0), (1+1), (1*1), (1-1), (1+2), (1*2),
(1_3)1 (1+4)r (1*4)1 (1_4)1 (1+Y)r (1*Y)l (1_Y)l (1+x)l (l*x)l
(2-0), (2+1), (2*1), (2-1), (2+2), (2*2), (2-2), (2+3), (2*3),
(2_4)1 (2+Y)r (Z*Y)r (Z_Y)r (2+X), (z*x)l (z_x)l (3+0)l (3*0)1
(3_1)1 (3+2)r (3*2)1 (3_2)1 (3+3)r (3*3)1 (3_3)1 (3+4)l (3*4)1 (3_4)1
(3_Y)r (3+x)r (3*X), (3—X), (4+0)r (4*0)1 (4_0)1 (4+1)l (4*1)1 (4_1)1
(4-2), (4+43), (4*3), (4-3), (4+4), (4*4), (4-4), (4+y), (4*y), (4-

(4-
(y-
(x-0), (x r (X ’
(X—4),

(0+2),
(O_Y)l
(1_2)1
(l_x)l
(2_3)1
(3_0)1

(0*2),
(0+x),
(1+3),
(2+0),
(2+4),
(3+1),
(3+y),
(4+2),
4+x),

(0*x),
(1*3),
(2*0),
(2*4),
(3*1),
(3*Y),
(4*2),
4*x),

)/

4

(expr + expr)
(expr - expr)

(expr * expr)

’ X ’ X ’ X= ’ X ’ ’ ’
(0+0), (0*0),

42 P 1. A N

Xra),
(0+1), (0*1),

4 R 1. ™ 4 R 1. 9

Enumeration...pruned with Operational

—Which is the fancy program synthesis way of

Equivalence

saying “they do the same thing on the inputs
we care about.”

Spec:
({ V\><//
(\\><" N 41,
({ \\><"

Ok, these are all just 0...which we already
have. Why'd you give me these???

l
W

V\EZVV R '7 } ,
V\EZVV R 14 } ,
V\le' R]-22 } ,

23)
19)
31)

level O:
[OI 1' 2' 3'
count: 7

4, v, X]

level 1 :
[0, 1, 2, 3,

4r Y, X, (0+1)l (0*1)1 (0—1), (O+2)I (0*2)1 (0_2)1

Space of programs:
N

eXpr .=
4

(expr + expr)
(expr - expr)

(expr * expr)

(0+3),
(1+0),
(1+4),
(2+1),
(2+y),
(3+2),
(3+x),
(4+3),

(y+0),
(y+4),
(x+1),

(xt+y),
count:

(0*3),
(1*0),
(1*4),
(2*1),
(2*y),
(3*2),
(3*x),
(4*3),
(y*0),
(y*4),
(x*1),
(x*y),
154

(0_3)1
(1—0),
(1_4)1
(2_1)1
(Z_Y)r
(3_2)1
(3—X),
(4_3)1
(Y‘o)r
(Y‘4)r
(X—l),
(x_Y)r

(0+4),
(1+1),
(1+y),
(2+2),
(2+x),
(3+3),
(4+0),
(4+4),

(y+1),

(Yty) .,
(x+2),

(x+x),

(1*1),
(1*y),
(2*2),
(2*x),
(3*3),
(4*0),
(4*4),
(y*1),
(Y*Y)
(x*2),
(x*x),

(*)l (-)l

(1_1)1
(1_Y)l
(2_2)1
(z_x)l
(3_3)1
(4_0)1
(4_4)1
(Y_l)l
(Y_Y)l
(x_z)l
(x-x)]

(0+y),
(1+2),

(1+x),
(2+3),
(3+0),
(3+4),
(4+1),

(4+y),
(v+2),

(y+x),
(x+3),

(0*y),
(1*2),
(1*x),
(2*3),
(3*0),
(3*4),
(4*1),
(4*y),
(y*2),
(Y*x),
(x*3),

(O_Y)r
(1_2)1
(1—X),
(2_3)1
(3_0)1
(3_4)1
(4_1)1
(4_Y)r
(Y‘z)r
(Y‘x)r
(X—3),

(0+x),
(1+3),
(2+0),
(2+4),
(3+1),
(3+y),
(4+2),
(4+x),
(y+3),
(x+0),
(x+4),

(0*x),
(1*3),
(2*0),
(2*4),
(3*1),
(3*Y),
(4*2),
(4*x),
(y*3),
(x*0),
(x*4),

(O_x)l
(1_3)1
(2_0)1
(2_4)1
(3_1)1
(3_Y)I
(4_2)1
(4_x)l
(Y‘3)l
(x_o)l
(x_4)l

And eventually we’ll find some that aren’t the same on all inputs, but are

the same on {"x" — 3, “y" = 7}, {"x" — 4, "y" — 4}, and {"x" — 2,

n, 1

y" = 12}

This is exactly as simple as it looks. Seriously, you can write
this synthesizer in vanilla Python in one page. Let’s see it!

1 itertools
2 class Op:
3 ops "+": lambda a,b: a+b, "-": lambda a,b: a-b, "x": lambda a,b: a+b}

def __init__(self, a, op, b):

self.a a; self.op op; self.b b
def __repr__(self):
(e str(self.a) self.op + str(self.b) ")

def interpret(self, argDict):
g Op.opslself.opl(self.a.interpret(argDict), self.b.interpret(argDict))
10 class Val:
11 def __init__ (self, v):
12 self.v vV
13 def __repr__(self):

str(self.v) . e g -
def interpret(self, argDict): This one isn’t pruning at all.

O laee yars ey What do we do to prune with OE?
18 def __init__ (self, n):
19 self.n n

20 def __repr__(self):

21 self.n

22 def interpret(self, argDict): Just an extra 6 lines!
23 argDict[self.n]

25 spec [({"x": 3, "y": 7}, 23),
26 ({"x": 4, "y": 4}, 19),
27 ({"x": 2, "y": 12}, 31)]

28 expected_outputs [output inputDict, output spec]
29 def test_against_spec(expr):
30 outputs [expr.interpret(inputDict) inputDict, output spec]
31 (outputs expected_outputs):
32 “found it!", expr
exit()
exprs [Val(x) X range(5)] [Var(x) X spec[0] [0].keys()]
"level 0:\n", exprs, "\ncount:", len(exprs)
expr exprs:

test_against_spec(expr)

ops Op.ops.keys()

41 level 0
42 (True):
level 1
44 "level", level, ":"
pair itertools.product(exprs, exprs):
op ops:

new_expr - Op(pair([@], op, pair[1])
test_against_spec(new_expr)
exprs.append(new_expr)

exprs, "\ncount:", len(exprs)

Sarahs-MBP:othermaterials schasins$ python onePageSynthesizer.py
level O:

[O I 35 A, Vel

count:

level

count:

level

. . count:
Prur"ng based on Opel‘atlonal / level 3

Equivalence can cut down our found it! (3+(2*(y+x)))
Sarahs-MBP:othermaterials schasins$ python onePageSynthesizerOE. py

search space dramatically! level 0
| O, i S e ey]
count: 7/
level 1 :
And this is just at level 2! count: 63
level 2 :
count: 2051
level 3 :
found it! (3+(2*(y+x)))

So if you're ever watching a synthesis talk and get
confused...just remember enumeration. At a
sufficiently high level of abstraction, it's just going
through programs until it finds one that works.

We can make enumeration smarter

® Doesn’t have to be just start with the smallest program, then list all the programs in
order of size until you find one that works
® \e can have heuristics or language models that let us explore better/likelier
programs first instead ot smaller programs first
® There are other ways of pruning (other than Operational Equivalence) that let us cut
out much more of the space
® \Ve can make smart choices about what constants to include
® This was the easy-to-write version, but there are many ways to make it more effective
® For a long time, the winner of the SyGuS competition (the primary competition for
people who write synthesizers) was an enumerative solver!
® This is a real technique!

Quick brainstorm. What woulo
you like to synthesize?

Synthesis is like a buffet

I

—_—

S = Stochastic g
st Tl synthesis %‘ |

e N
——

e =
2+ 1 Deductive ;‘? o) 5 23F
s Lalr g : £]

svnthesis™/ ;e

P LS S PV

Constraint- Enumerative ‘

based synthesis

- AP '.""‘*J
< r & o~ N4

synthesis = w.. — N 7

® This is not one technique that either applies or doesn’t apply to
your problem

® [t's a whole family of techniques

® Tackling a new problem, you'll probably be looking through a
host of existing approaches and tools...

® |f you read synth literature, you'll see very different domains

formalized in very different ways. This isn't accidental!

® ...and maybe inventing your own. Custom synthesizers are still
common

To think about for next reading

® The issue of ambiguous specs. As designers of usable
tools, do we want to prevent ambiguous specs? If yes,

how? Do we want to allow them? It yes, how does this
affect our synthesizer?

® \What constrains the design of a our target languages for
synthesis?

® \What's the tradeoft between designing for making the
synthesizer’s task easier vs. designing for the user of the
tool?

Please install before next class

https://docs.racket-lang.org/rosette-guide/ch_getting-started.html#%28part._sec~3aget%29

The Rosette Language

ABOUT DOWNLOAD DOCS APPS COURSES PAPERS

A brilliant language from

About Rosette Emina Torlak

Rosette is a solver-aided programming language that extends Racket with language
constructs for program synthesis, verification, and more. To verify or synthesize code,
Rosette compiles it to logical constraints solved with off-the-shelf SMT solvers. By
combining virtualized access to solvers with Racket's metaprogramming, Rosette

Mﬂllf\ﬁ :4‘ P g, N 4‘1\ AA\ If\lf\lf'\ Fa 3 llﬂ+|ﬂﬂﬁ:ﬁ "\II\IJ A Y IAV:GI\"\J':I'\H 4"\/\"'\ cf\l’ ™ N\’ l"\l"\l\ll 1 7% A "™ S \/f\l] A:MV\I\ 9

