Program Slicing

CS294-184: Building User-Centered Programming Tools UC Berkeley Sarah E. Chasins

Program Slicing Week, Day 1

The final project survey

® Quick logistics note

® |f you haven't filled the final projects group survey, ana
especially it you want me to pair you with a team,
please fill the survey soon!

® (This is for getting a snapshot of where we are now, not
for immediately before the team formation deadline!)

® Find link in the slack!

Reading retlection

® \What did the two tools you saw in the demo videos have in
common?

® \When you figure out that a program you're debugging is
producing a wrong output, what's your next step?

The key common feature:

program slicing!

PROGRAM SLICING*

Mark Weiser

Computer Science Department
University of Maryland
College Park, MD 20742

Abstract

Program slicing 1s a method used by experienc-
ed computer programmers for abstracting from pro-
grams. Starting from a subset of a program's pe-
havior, slicing reduces that program to a minimal
form which still produces that behavior. The
reduced program, called a "slice”, is an indepen-
dent program guaranteed to faithfully represent
the original program within the domain of the
specified subset of behavior.

Finding a slice is in general unsolvable. A
dataflow algorithm is presented for approximating
slices when the behavior subset is specified as
the values of a set of variables at a statement.
Experimental evidence is presented that these
slices are used by programmers during debugging.
Experience with two automatic slicing tools is
summarized. New measures of program complexity
are suggested based on the organization ot a
program's slices.

KEYWORDS: debugging, program maintenance, soft-

ware tools, program metrics, human factors, data-
flow analysis

Introduction

A large computer program is more easily con-
structed, understood, and maintained when broken

s midta amaTT A ma A~ RS Catimwma 1 ds B anam o s il o a

behavior is of interest. For instance, during
debugging a subset of pehavior is being corrected,
and in program modification or maintenance a sub-
set of behavior is being improved or replaced. In
these cases, a programmer starts from the program
behavior and proceeds to find and modify the cor-
responaing portions of program code. Code not
having to do with behavior of interest is ignored.
Gould and Dronkowski {(19/4) report programmers
behaving this way during debugging, and a further
confirmng experiment is presented below.

A programmer maintaining a large, unfamiliar
program would almost have to use this behavior-
first approach to the code. Understanding an en-
tire system to change only a small piece would
take too much time. Since most program mainte-
nance 1s done by persons other than the program
designers, and since 67 percent of programming
effort goes into maintenance (Zelkowitz, Shaw,
and Gannon 1979), decomposing programs by behavior
must be a common occurence.

Automatic slicing requires that behavior be
specified in a certain form. If the behavior of
interest can be expressed as the values of some
sets of variables at some set of statements, then
this specification is said to be a slicing crite-
rion. Dataflow analysis (Hecht 1977) can tind all
the program code which might have infiuenced the
specified behavior, and this code is called a

Examples of Slices

The original program:
BEGIN
READ(X,Y)
TOTAL := 0.
SUM := 0.0
[F X<=1
THEN SUM := Y
ELSE BEGIN
READ(Z)
TOTAL := X*Y
10 END
11T WRITE(TOTAL,SUM)
12 END.

Slice on the value of Z at statement 12.
BEGIN
READ(X,Y)
IF X < 1]
THEN
ELSE READ(Z)
END.

Slice on the value of X at statement 9.
BEGIN
READ(X,Y)
END.

Slice on the value of TOTAL at statement 12.
BEGIN
READ(X,Y)
TOTAL := 0
[F X <=1
THEN
ELSE TOTAL := X*Y
END.

0

O ONOYOYT B wnN —

sum = 0

prod = 1 prod = 1

=1 =1

while (i < 11) while (i < 11)

(| {

sum = sum —+ |
prod = prod * i prod = prod * i
=i+ 1 =i+ 1

) prod

The same example, but maybe a bit more familiar looking!

figure from Program Slicing, Keith Gallagher et al.

jnal %anM\ EauTu afti

Ok, let’s get a look at this AST

thing

SUm acCcC |
P I‘Oa aCC Look at that beautiful AST!
i 1 Moduéce)éy:[

(i 11) : ASSj%?r(]enoﬂ,

col _offset=0,

end lineno=1,

end col offset=11,

targets=[Name(lineno=1, col offset=0, end lineno=1, end col offset=7, id='sum acc', ctx=Store(),
value=Constant(lineno=1, col offset=10, end lineno=1, end col offset=11, value=0, kind=None),
type comment=None,

Sum_acc Sum_acc 1
prod_acc - prod_acc 1
i=1+1
print("sum", sum_acc)
print("prod", prod_acc)

) »
Assign(

lineno=2,

col offset=0,

end_lineno=2,

end col offset=12,

targets=[Name(lineno=2, col offset=0, end lineno=2, end col offset=8, id='prod acc', ctx=Store(;

Our PythOn program (the ohe we're anaIyZing, value=Constant(lineno=2, col _offset=11, end lineno=2, end col offset=12, value=1, kind=None),

type comment=None,
)

Assign(

lineno=3,

col offset=0,

end lineno=3,

end col offset=5,

targets=[Name(lineno=3, col offset=0, end lineno=3, end col offset=1l, id="1"', ctx=Store())],
value=Constant(lineno=3, col offset=4, end lineno=3, end col offset=5, value=1l, kind=None),
type _comment=None,

OO OUT S WN K-

(o

not the one we’re running)

code — open(filename).read()
12 tree - ast.parse(code)
astpretty.pprint(tree)

)
While(

lineno=4,

col offset=0,

J I . end_lineno=7/,
Here's the one we're running... end col offset=10.
test=Compare(

lineno=4,
col ofirset=7

Next, we need to know how
control flows through the program

Enter...the control flow graph (CFG)

We'll build up a graph representing all the paths we could
take through the program during execution

Another entry in our theme of
/ ‘there are so many ways to
< represent programs’!
do until while case for

if-then-else

SUm_acc 0
prod_acc 1
1 1
(i < 11):
Sum_acc Sum_acc 1

prod_acc prod_acc

i=1+1
print("sum", sum_acc)
print("prod", prod_acc)

Program to analyze

CFGs

0: start

'

I: sum_acc=0

|

2: prod_acc =1

3:1=1

— G whiles i< 1T

5: sum_acc = sum_acc + 1

'

6: prod_acc = prod_acc *

i

N

T:1=1+1

F

8: print(‘'sum’, sum_acc)

'

9: print('prod', prod_acc)

'

0: stop

The CFG!

But how do we get the slice
from this thing?

Starting from a CFG, we'll compute data tflow information about
the set of relevant variables at each node

n |Statement | ref(n) | def(n) | relevant(n)

We'll use this * and this ~ to figure out this ~
Referenced at node n

Defined at node n

Program Slicing: Straight-Line Code

Slice tor node n and variables V

1. Initialize the relevant sets ot all nodes to the empty set.

2. |Insert all variables of V into relevant(n).

3. For n'simmediate predecessor m, compute relevant(m) by:

// tirst exclude all variables defined at m (because we're overwriting it)
relevant(m) := relevant(n) - def(m)
// it m defines a variable that’s relevant at n
it def(m) in relevant(n) then
// include the variables that are referenced at m
relevant(m) := relevant(m) u ref(m)

include m in the slice
end

4. Repeat (3) for m's immediate predecessors, and work backwards in the CFG until
we reach the start node or the relevant set is empty

Step 3:

Step 3:
Step 3:
Step 3:
Step 3:

n | Statement | ref(n def(n) | relevant(n
SN (n) | def(n) (n)
Bolded n are included 1 b= b
in the slice 2 lc=2 C b

3 |d=3 d b, C

4 la=d d a b, C

5 |d=b+d b, d d b, C

6 b=b+1 b b b, C

7 la=b+c b, C a b, C

8 | printa a a
slice for <8, {a}> Step2: relevant(8) = {a}

Step 3: relevant(7) = relevant(8) - def(7) = {a} -{a}
relevant(7) = relevant(7) U ref(7) = {} U {b, ¢}

Since node 7 defines a variable relevant at node 8, itis included into the slice.

relevant(6) = relevant(7) - def(6)
relevant(6) = relevant(6) U ref(6)

= {b, c} - {b}
= {c} U {b}

Since node 6 defines a variable relevant at node 7, itis included into the slice.

relevant(5) = relevant(6) - def(5) = {b, c} - {d}
relevant(4) = relevant(5) - def(4) = {b, c} - {a}
relevant(3) = relevant(4) - def(3) = {b, c} - {d}
relevant(2) = relevant(3) - def(2) = {b, c}-{c}
relevant(2) = relevant(2) U ref(2) = {b} U {}

Since node 2 defines a variable relevant at node 3, itis included into the slice.

Step 3:

relevant(1) = relevant(2)-def(1)

relevant(1) = relevant(1) U ref(1)

Since node 1 defines a variable relevant at node 2, itis included into the slice.

= {b} - {b}
= {0V

il
e B cutn
[Ny S

What will happen it we add an it
statement into our program?

® Any guesses?

Moving towards handling
control flow...

® Ve have to extend our earlier approach to:
® |f we add a node m to our slice:
® also add the control set of m to our slice
® (the control set is the set of predicates that directly control its execution)
® for each node cincluded based on being in the control set:
® make a new slice! Starting at node ¢ for variables ref(c). The
original slice (for <n, V>) will now also include all nodes in the slice
for <c, ref(c)>
® Union the relevant sets (e.g., relevant(ms) and relevant(my)) for cases where we
have multiple descendants with a shared predecessor
® (Remember that once we have control flow, we can have multiple
descendants!)

n Statement | ref(n) | def(n) | control(n) | relevant(n)

1 b=1 b

2 c=2 C b

3 d=3 d b, C

4 a=d d a b,c,d

5 if athen a b,c,d

6 d=b+d| b,d d 5 b, d

7 c=b+d| b,d C 5 b, d
else

8 b=b+1 b b 5 b, C

9 d=b+1 b d 5 b, C
endif b, C

10 |a=b+c b, C a b, C

11 printa a a

slice for <11, {a}>

Step 2:
Step 3:

Step 3:
Step 3:

Step 3:

Step 3:

Step 3:
Step 3:
Step 3:

Step 3:

Step 3:

relevant(11) = {a}

relevant(10) = relevant(11) - def(10) = {a} - {a} = {}
relevant(10) = relevant(10) U ref(10) = { U {b, c} = {b, c}
Since node 10 defines a variable relevant at node 11, itis included into the slice.
relevant(9) = relevant(10) - def(9) = {b, c} - {d} = {b, c}
relevant(8) = relevant(9) - def(8) = {b, c} - {b} = {c}
relevant(8) = relevant(8) L ref(8) = {c} U {b} = {b, c}
Since node 8 defines a variable relevant at node 9, it is included into the slice.

Since control(8) = 5, node 5 is included into the slice.

The slice for node 5 with respect to ref(5) is computed below.

relevant(7) = relevant(10)-def(7) = {b, c} - {c} = {b}
relevant(7) = relevant(7) L ref(7) = {b} L {b, d} = {b, d}
Since node 7 defines a variable relevant at node 10, itis included into the slice.

Since control(7) = 5, node S is included into the slice.

The slice for node 5 with respect to ref(5) is computed below.

relevant(6) = relevant(7) - def(6) = {b, d} - {d} = {b}
relevant(6) = relevant(6) L ref(6) = {b} U {b, d} = {b, d}
Since node 6 defines a variable relevant at node 7, it is included into the slice.
relevant(5) = relevant(6) U relevant(8) = {b,d} U {b, c} = {b, c, d}
relevant(4) = relevant(5) - def(4) = {b, c, d} - {a} = {b, c, d}
relevant(3) = relevant(4) - def(3) = {b, c, d} - {d} = {b, c}
relevant(3) = relevant(3) L ref(3) = {b,c} U {} = {b, c}
Since node 3 defines a variable relevant at node 4, it is included into the slice.
relevant(2) = relevant(3) - def(2) = {b, c}-{c} = {b}
relevant(2) = relevant(2) U ref(2) = {b} U {} = {b}
Since node 2 defines a variable relevant at node 3, it is included into the slice.
relevant(1) = relevant(2) - def(1) = {b} - {b} = {}
relevant(1) = relevant(1) U ref(1) = {Ju{} = {}

Since node 1 defines a variable relevant at node 2, it is included into the slice.

slice currently contains: 10, 8, 7, 6, 5, 3, 2, 1

We're not done yet! Remember slice for

node 5 w.r.t. ref(5)!

Let’s take care of that subslice

n Statement | ref(n) | def(n) | control(n) | relevant(n)
1 b=1 b
2 c=2 C
3 d=3 d {
4 a=d d a {d}
5 if athen a {a}
6 d=b+d| b,d d 3
7 c=b+d| b,d C 3

else
8 b=b+1 b b 3
9 d=b+1 b d 3

endif
10 |a=b+c b, C a
11 printa a

slice for <5, {a}>

Step 2:
Step 3:

Step 3:

relevant(5) = {a}

relevant(4) = relevant(5) - def(4) = {a} - {a} = {}
Since node 4 defines a variable relevant at node 5, it is included into the slice.
relevant(4) = relevant(4) L ref(4) = {} L {d} = {d}
relevant(3) = relevant(4) - def(3) = {d} - {d} = {}
Since node 3 defines a variable relevant at node 4, it is included into the slice.
relevant(3) = relevant(3) U ref(3) = {}U{} = {}

Since the relevant set is empty, no more nodes will be included into the slice.

final slice contains: 10, 8,7, 6,5, 4, 3, 2, 1

More reading

® The nice worked examples in these slides come from:
® Program Slicing for Object-Oriented Programming
Languages, Christoph Steindl (dissertation)
® |f you want to dig in on these specific worked examples, take
a look at Chapter 3 of the dissertation:
® http://www.ssw.uni-linz.ac.at/General/Staft/CS/Research/
Publications/Ste9%a.html
® A more comprehensive resource:
® Cooper and Torczon's Engineering a Compiler textbook
® http://www.r-5.org/files/books/computers/compilers/
writing/Keith_Cooper_Linda_Torczon-
Engineering_a_Compiler-EN.pdf

http://www.ssw.uni-linz.ac.at/General/Staff/CS/Research/Publications/Ste99a.html
http://www.ssw.uni-linz.ac.at/General/Staff/CS/Research/Publications/Ste99a.html
http://www.r-5.org/files/books/computers/compilers/writing/Keith_Cooper_Linda_Torczon-Engineering_a_Compiler-EN.pdf
http://www.r-5.org/files/books/computers/compilers/writing/Keith_Cooper_Linda_Torczon-Engineering_a_Compiler-EN.pdf
http://www.r-5.org/files/books/computers/compilers/writing/Keith_Cooper_Linda_Torczon-Engineering_a_Compiler-EN.pdf

What

apbout loops?

® |f we have loops, we have to keep iterating over the CFG

until our slice and our relevant sets stabilize

® You won't be requi

red to handle loops for your homework,

but it's pretty fun i

“you're interested :)

| et’s do this!

® Fire up your

® This is going to be our last programming assignment of the

semester, so get ready to do some language hacking :)

