
Program Slicing

CS294-184: Building User-Centered Programming Tools UC Berkeley Sarah E. Chasins
Program Slicing Week, Day 1

The final project survey

• Quick logistics note

• If you haven’t filled the final projects group survey, and
especially if you want me to pair you with a team,
please fill the survey soon!

• (This is for getting a snapshot of where we are now, not
for immediately before the team formation deadline!)

• Find link in the slack!

Reading reflection

• What did the two tools you saw in the demo videos have in
common?

• When you figure out that a program you’re debugging is
producing a wrong output, what’s your next step?

The key common feature:
program slicing!

1981

The same example, but maybe a bit more familiar looking!

figure from Program Slicing, Keith Gallagher et al.

Original image from YouTuber Craftingeek EN

Ok, let’s get a look at this AST
thing

Our Python program (the one we’re analyzing,
not the one we’re running)

Here’s the one we’re running…

Look at that beautiful AST!

Next, we need to know how
control flows through the program

Enter…the control flow graph (CFG)

We’ll build up a graph representing all the paths we could
take through the program during execution

Another entry in our theme of
‘there are so many ways to

represent programs’!

CFGs

Program to analyzeProgram to analyze

The CFG!

But how do we get the slice
from this thing?

Starting from a CFG, we’ll compute data flow information about
the set of relevant variables at each node

We’ll use this ^ and this ^ to figure out this ^

Referenced at node n

Defined at node n

Program Slicing: Straight-Line Code
Slice for node n and variables V
1. Initialize the relevant sets of all nodes to the empty set.
2. Insert all variables of V into relevant(n).
3. For n's immediate predecessor m, compute relevant(m) by:

// first exclude all variables defined at m (because we’re overwriting it)
relevant(m) := relevant(n) - def(m)
// if m defines a variable that’s relevant at n
if def(m) in relevant(n) then
 // include the variables that are referenced at m
 relevant(m) := relevant(m) ∪ ref(m)
 include m in the slice
end

4. Repeat (3) for m’s immediate predecessors, and work backwards in the CFG until
we reach the start node or the relevant set is empty

slice for <8, {a}>

Bolded n are included
in the slice

What will happen if we add an if
statement into our program?

• Any guesses?

• We have to extend our earlier approach to:
• If we add a node m to our slice:

• also add the control set of m to our slice
• (the control set is the set of predicates that directly control its execution)
• for each node c included based on being in the control set:

• make a new slice! Starting at node c for variables ref(c). The
original slice (for <n, V>) will now also include all nodes in the slice
for <c, ref(c)>

• Union the relevant sets (e.g., relevant(m1) and relevant(m2)) for cases where we
have multiple descendants with a shared predecessor
• (Remember that once we have control flow, we can have multiple

descendants!)

Moving towards handling
control flow…

slice for <11, {a}>

We’re not done yet! Remember slice for
node 5 w.r.t. ref(5)!

slice currently contains: 10, 8, 7, 6, 5, 3, 2, 1

slice for <5, {a}>

Let’s take care of that subslice

final slice contains: 10, 8, 7, 6, 5, 4, 3, 2, 1

More reading
• The nice worked examples in these slides come from:

• Program Slicing for Object-Oriented Programming
Languages, Christoph Steindl (dissertation)

• If you want to dig in on these specific worked examples, take
a look at Chapter 3 of the dissertation:
• http://www.ssw.uni-linz.ac.at/General/Staff/CS/Research/

Publications/Ste99a.html
• A more comprehensive resource:

• Cooper and Torczon's Engineering a Compiler textbook
• http://www.r-5.org/files/books/computers/compilers/

writing/Keith_Cooper_Linda_Torczon-
Engineering_a_Compiler-EN.pdf

http://www.ssw.uni-linz.ac.at/General/Staff/CS/Research/Publications/Ste99a.html
http://www.ssw.uni-linz.ac.at/General/Staff/CS/Research/Publications/Ste99a.html
http://www.r-5.org/files/books/computers/compilers/writing/Keith_Cooper_Linda_Torczon-Engineering_a_Compiler-EN.pdf
http://www.r-5.org/files/books/computers/compilers/writing/Keith_Cooper_Linda_Torczon-Engineering_a_Compiler-EN.pdf
http://www.r-5.org/files/books/computers/compilers/writing/Keith_Cooper_Linda_Torczon-Engineering_a_Compiler-EN.pdf

What about loops?

• If we have loops, we have to keep iterating over the CFG
until our slice and our relevant sets stabilize

• You won’t be required to handle loops for your homework,
but it’s pretty fun if you’re interested :)

Let’s do this!

• Fire up your

• This is going to be our last programming assignment of the
semester, so get ready to do some language hacking :)

