Cognitive Models of
Programming

CS294-184: Building User-Centered Programming Tools UC Berkeley Sarah E. Chasins

Cognitive Models of Programming Week, Day 1

Reading Reflection

® Did you notice that you gained richer schemas over the
course of your own programming journey?
® \What do you think of the critique of structure editors as
being too close to the structure of the language instead of
schemas?
® \What key insight or insights (it any) stood out to you as being
relevant to your future PL or programming tool design work?
® To the problems you uncovered in your need-finding
homework?
® To the problems you've uncovered in final project part 1
so far?

Reminder: assignment this week is
to prepare for short presentations
that you'll give next week!

See assignment doc on the website!
Reward for having to make a short talk—no other readings next
week! Just your chosen paper!

These slides draw heavily from Chapter 3 of Software Design
—Cognitive Aspects, but I'm going to emphasize a particular
subset

Approaches

® Knowledge-Centered: It's all about what syntactic knowledge, semantic
knowledge, and schematic knowledge you've stored up

® Strategy-Centered: It's all about the strategies you use for applying the
knowledge types to build up programs

® Organization-Centered: It's all about how the design process/design
activity is organized. Do we start with a high-level plan, work down
breadth-first until we have a program? Do we pursue an iterative design
process, planning, drafting, and editing?

Knowledge-Centered
Approaches

Programming Knowledge

Researchers in program design are generally agreed that there
are three types of knowledge that serve to distinguish experts

from novices:

1. Syntactic knowledge, wh
elements of a programming
that, in C, the it statement ta
statement.

ich defines the syntactic and lexical

anguage, for example, the fact

ces the form if (condition)

2. Semantic knowledge, which reters to the concepts, such as

the notion of a variable, that

make it possible to understana

what happens when a line of code is executed.
3. Schematic knowledge, that is, programming schemas that

represent generic solutions.

Elementary through Complex

Elementary programming schemas represent knowledge about control

structures and variables. Think of a frame with slots. See fig. For example, SR I e

a counter variable schema can be formalized as following: g .
Sum, Count, Number : integer:
® (Goal: count the occurrences of an action Average: real;
ST : begin
® |nitialization: count:=n Plan for summation variable (initialisation) P Sum :=0;
P Update: count:=count+increment Plan for counter variable (initialisation) ’2:::70;
® TYP93 i”teger Plan for summation loop | readin (Number);
if Number <> 99999 then
® Context: loop begin
. . . Plan for summation variable (update) 2 Sum := Sum + Number;

Algorithmic schemas or complex programming schemas represent Plan for counter variable (update) 3 Count = Count + 1
knowledge about structure of algorithms. For example, some programmers . '-";d:

. e until Number = 99999;
will be familiar with a variety of algorithms tor sorting and searching. These piision plan - AVerage = Sum/Count;
algorithms are more or less abstract and more or less independent of the rring pas v

programming language, and they can be described as made up of
elementary schemas. For example, a sequential search schema is less
abstract than a search schema and can be described as being composed,
in part, of a counter variable schema.

Chess knowledge predicts chess memory even after controlling
for chess experience: Evidence for the role of high-level processes

There's a whole history of work showing chess

masters can memorize boards really well...unless
David M. Lane* - Yu-Hsuan A. Chang’ it's a board you couldn’t reach from real play.

Published online: 3 November 2017
© Psychonomic Society, Inc. 2017

Abstract The expertise effect in memory for chess positions The strong relationship t 0.4
is one of the most robust effects in cognitive psychology. One chess positions is one ¢
explanation of this effect is that chess recall is based on the psychology (Chase & S
recognition of familiar pattemns and that experts have leamed 1965; Gobet & Clarksor 0.2

more and larger patterns. Template theory and its instantiation ~ 1978; Gong, Ericsson,

as a computational model are based on this explanation. An 1979). However, despite 8

alternative explanation is that the expertise effect is due, in of this relationship is n« 8 00
part, to stronger players having better and more conceptual theorized that chunks bz é;
knowledge, with this knowledge facilitating memory perfor- while playing and study e

_mance_Our literature_review sunnarts the latter view In our_____orv_These chnunks are 1 g -0.2
=

-0.4 .
This is chart is showing the data after controlling
for experience! 0.6 .

05 04 03 -02 -0.1 0.0 0.1 0.2 0.3 0.4
Knowledge Residuals

Fig. 2 Partial regression plot showing the part of memory independent of the three experience variables, as a function of the part of knowledge
independent of these same variables.

Ok, back to programming...

Materials. Two FORTRAN program listings were used as test items:
Program A was a proper executable program (Fig. 1), and Program B was a
set of statements of a randomly shuffled FORTRAN program (Fig. 2).
Program A consisted of 20 lines of code, and Program B had 17 lines. (These
programs were taken from Organick and Meissner,*® pp. 86-87.)

Table I. Mean Number and Percentage
Exploratory Experiments in of Correct Lines

Programmer Behavior

Number correct
Ben Shneidermant

Shuffled

' Real pr
Received February 1975; revised August 1975 Expenmental ea P 09
group :

prog

The techniques of cognitive psychological experimentation ca
specific issues in programming and explore the broader issues of

behavior. This paper describes the methodological gquestions First day Of FORTRAN class 1 7.1 41
perimentation and presents two exploratory experiments: a memorizatio
task and a comparison of the arithmetic and logical IF statements in FORTRAN. 11 10.2 4.6

KEY WORDS: Programming; programmers; psychological 111 12.7 5.4
tions; human factors; cognitive psychology; memorization Grad students and fGCUlty
branching.

IV 17.3 6.4

That the average number of correctly memorized statements for
Program B 1s five or six brings to mind the well-known paper by George
Miller, “The Magical Number Seven, Plus or Minus Two: Some Limits on
Our Capacity for Processing Information,”'% which indicates that the
human short-term memory capacity is seven units plus or minus two. A
detailed psychological analysis of the dimensions of our problem of informa-
tion transfer is complex, but if one accepts a line of FORTRAN code as a unit
of information transfer, our result is well within the limit of Miller’s seven
plus or minus two.

Strategy-Centered Approaches

1
® Top-down vs. Bottom-up n
® Forward vs. Backward \of
® Breadth-First vs. Depth-First Leve ?
abstraction

2 - o

s [[e][r] [o] [v] [

forward

backward

CDN — Strategy Changes

@) ~
| i

-
-
-
-
-
-
-
-
- -
-
-

® Cognitive dimensions of notation proven to affect

n
1
Qa

which strategies programmers apply

The Role of Notation
and Knowledge Representation
in the Determination of Programming Strategy:
A Framework for Integrating Models
of Programming Behavior ;-

§ &N
1

— — —
- — J e
1 I 1 1

Mean Nunber of plan jumps
19

O
1

SIMON P. DAVIES
Huddersfield Polytechnic, United Kingdom 6

Although the results of this study do not reveal a main effect of language, SJ{’
they do indicate a potentially interesting three-way interaction among jump-
type, language, and skill level. Further analysis suggests that this interaction
results from the fact that a greater number of interplan jumps are performed
by intermediate and expert Pascal programmers in comparison to their " Basic
BASIC counterparts. One reason for this seems to be that the effect of nota- " Pascal
tion in the determination of programming strategy plays a greater role as :L‘::l?..‘ixzﬂni:"p:le°:niS'EZSEddiﬂ:f:f;Z;f:.:Z performed by programmers of differ
programming skills develop, and particularly at intermediate skill levels. |

Novice Intermediate Expert

SKILL LEVEL

- Inter-Plan Jumps

Intra-Plan Jumps

CDN — Strategy Changes

® Cognitive dimensions of notation proven to affect

which strategies programmers apply B -seen .

The Role of Notation it
and Knowledge Representation
in the Determination of Programming Strategy:
A Framework for Integrating Models
of Programming Behavior

Mcan Length of pause (sec)

SIMON P. DAVIES
Huddersfield Polytechnic, United Kingdom

Although the results of this study do not reveal a main effect of language, i
they do indicate a potentially interesting three-way interaction among jump- C R il
type, language, and skill level. Further analysis suggests that this interaction SKILL LEVEL
results from the fact that a greater number of interplan jumps are performed Gpaic < ees Inter-Plan Jumps
by intermediate and expert Pascal programmers in comparison to their ¢ Pascal JmraeFlan s
BASIC counterparts. One reason for this seems to be that the effect of nota- fiomte v Ipieph Siropne (S Fptvise) |rfery e Ipine i s i ey

languages during program generation,

tion in the determination of programming strategy plays a greater role as
programming skills develop, and particularly at intermediate skill levels.

Organization-Centered
Approaches

Organization-Centered

® This is the strand that's most concerned with observing how
people actually organize their work
® Also the strand that recognizes the iterative nature of so
much programming
® Plan

® Code
® Revise

Organization-Centered:
Programming +

® Sce this body of literature and especially work by Simon P.
Davies for work on the effects of working memory on
programming

Organization-Centered:
Programming +

® Sce this body of literature and especially work by Rachel K. E. Bellamy ana

Simon P. Davies for more on how programmers co-design code and
supporting natural language

® Also see Bellamy’s related work on pseudocode
® “Four categories of pseudo-code emerged from the data:
diagrams, semiformal annotations, coding on paper, and text...

Results suggest that programmers use pseudo-code and pen and
paper to reduce the cognitive complexity of the programming
task.”

- What does pseudo-code do? A psychological analysis of the use

of pseudo-code by experienced programmers. By Rachel K. E.
Bellamy

Novices vs. Experts

Novices vs. Experts

Compared with novices, experts:

® construct a more complete problem representation before embarking on the
process of solving it

® use more rules of discourse

® use more meta-cognitive knowledge about programming tasks and about
suitable and optimal strategies for completing them; know a number of possible
strategies for completing a task and are able to compare them to select a good
approach

® are capable of generating several alternative solutions betore making a choice

® use more external devices, particularly as external memory; their design strategy
is top-down and forward for tamiliar and not too complex problems, while
novices go bottom-up and backwards

® do some aspects of programming tasks “automatically”

Susan Wiedenbeck’s work is especially
useful here

Int. J. Man-Machine Studies (1985) 23, 383-390

Novice/expert differences in programming skills

SUSAN WIEDENBECK
Department of Computer Science, University of Nebraska, Lincoln, NE 68588, U.S.A.

(Received 23 February 1985)

Automation is the ability to perform a very well-practised task rapidly, smoothly and
correctly, with little allocation of attention. This paper resports on experiments which
sought evidence of automation in two programming subtasks, recognition of syntactic
errors and understanding of the structure and function of simple stereotyped code
segments. Novice and expert programmers made a series of timed decisions about
short, textbook-type program segments. It was found that, in spite of the simplicity of
the materials, experts were significantly faster and more accurate than novices. This
supports the idea that experts automate some simple subcomponents of the program-
ming task. This automation has potential implications for the teaching of programming,
the evaluation of programmers, and programming language design.

International Journal of Man-Machine Studies
Volume 23, Issue 4, October 1985, Pages 383-390

ance and is only needed when unusual conditions or errors arise. The third and final
phase of skill development is the autonomous phase, which is characterized by high
speed and accuracy and the existence of a set procedure for performance of the skill.
At this stage declarative knowledge is little used and may even become difficult to
access. Growing automation may make it possible to perform the skill while simul-
taneously performing some other attention-demanding task.

TABLE 4

Priming experiment—mean error percentages and mean reaction times (ms)

e M —— M —

Syntactic Functional
prime prime

True False True False Row mean

Novice
Expert

Column
mean

7-0% 4603 ms 7-4% 3811 ms 12:2% 8414ms 6:3% 7588 ms 8:2% 6104 ms
3:3% 2089 ms 3:0% 1886ms 6:7% 4873 ms 1:-1% 3880ms 3:5% 3182 ms
52% 3346 ms 52% 2848 ms 9:4% 6643 ms 3:7% 5734ms 5:9% 4643 ms

There was a significant difference in accuracy between novices and experts
(F(1,18)=18-80, p =0-0004). The mean novice error rate was 8:2%, while the mean
expert error rate was 3:5%. In the accuracy analysis there was no interaction between

Why??

® Other than the fact that the findings of individual papers in this space are super
fascinating, why are we taking the time to cover this?
® So you know the key terms when you need to find these papers to answer design

questions of your own (without running a study!)

® So when you find these same patterns or related patterns in your own studies, you
know what line of work you’re continuing or extending
® So when you write related works sections, you don’t miss key background...
® ...and don't reinvent the wheel!)

® But above
learn abou

d
t

|, because this

orogrammers’ |

ine of research offers a glimpse of how much we can

nternal state from well-designed experiments!

® Read Thursday’s paper with this framing in mind

® \\Vith t

ne right stimuli, we can start inferring really low-level details of
programmers’ mental models

Activity!

® Section 3.6 of the reading for today suggests ways we could make programming

too
® Vit

s more suited to programmers’ real needs.

n your group, review Section 3.6 and brainstorm an intervention that draws on

these recommendations. Feel free to draw from other parts of the reading if the 3.6

ideas don't inspire you. Your intervention could be:

A new PL, programming environment, or programming tool
Modifications to an existing PL, programming environment, or programming tool

® \Write up three slides on your intervention (see template in the linked slideshow)

At least one slide should be devoted to the concepts or passages from the
reading that support your design

Add your slides to the presentation in the slack channel!

Choose someone to present your slides when we come back together as a group

