Need Finding tfor PL

CS294-184: Building User-Centered Programming Tools UC Berkeley Sarah E. Chasins
Need Finding Week, Day 1




Reading Reflection

Discuss in groups

® Think back to before you learned about need tinding
(whether that was from today’s readings or in the distant
past). Did you instinctively use need finding techniques
to find problems to work on? How?

® [f/when you used need finding by instinct, did you mostly
focus on users with skills like yours?

® \When was the last time you talked to someone and came
away with an idea for a new library, abstraction,
programming tool, or programming environment?

® Can you think of any dangers of using techniques
borrowed from ethnography and anthropology?



Finally time to talk about actually
conducting user studies!!



A4S0 A4S0 A4S0 §
rE if ‘ rf“" e rE if ‘ o

ol Sonnvl o
RH‘i'Q‘ " 5 tf‘*:’"i'o‘

-———~“‘ -———~“‘ -

T —
ORTANTISSR ;. ISO/IMPORTANTRR » SSOIMPORTANTRSSNY . ISOIMROR
‘ L o o< o * v > o * v . » &

o 3




L)

& [ & P
A ) ; ¢ 4 / ’ / p
“« o 4 ‘ " ' P ' / /
3 ‘ ¢ ‘ o ‘ ' ¢ ‘ ' / 7 / /
. 3 . ‘ 4 ' ' / [ / ’ /
. 4 ‘ ] '
: o | . it p ; y ! N / : Y s ; /
p Y ‘. ' ‘ ! X / 4 4 4 /
' A /
4 ‘ ‘ ' ' ' f / ’
‘ ¢ . M / N p r / /
R . ‘' ' : g . ’ ’ ' / 4
. L . ' ‘ ' ] s ) /
e A ‘ ' ! ', : p ] / 4 7 / ) / /
; . e g4 ' ' ' / 7 / / / & /
. 2 ' 24 ‘ ' ' 3 P /
. ‘ J ' 4 / /
' /
% ' F ' / y / 4
. . 3 ' & « ' ‘' J ' ' f /
) r] ' 4 / /
a / /
/ / / /
¢ 4 ’ / £ / /
/ 4 / / /
' 3 /
’ /
’ / /
v / Lt 4
/ ’ / /
; /
’ 4 4 / s
4 /
’
/
G / /
/ y; /
/ / /
& H / /
7 /
’ ’ /
’
/ / z 7 / /
’
' ’ y 4 / / /1
’ ’ ’
’ ’ / 7 / / / ’
’
X / ; / e ’ 7
/ s 7 pt
’ 7 ’ ) / 25 4 /
/
’ ’ 4 /
/ /
/ /
’ ’ ’ / ;
/ / Vi
) A ’
) % & :
’ 4 / ’ y;
5 / ’ 7 / ’
/ . ’ /
/
/
’ ‘ ’
’ ’ y
/ 7
y 7 ’ ’
’ / /
/ ’ s /
‘
,( / 3 /
/ ’ / s ’
’ L 2 > /
€ 4 ’ % . ’
’ ’ /
’ 7 203 ’ ’
’ ’ ’ / ’
2 / / 4 / /
/
% Y ’ ’ /
’ ’
) 7
’ A : ’
. ’ " < ; 7 ’
’
2 4 s
Crin % / o ’
7 / 7
/] ({ 9 7 /
’ ’
y 5 /
ol . ¢ 2 ’ A ’ /
o ’
, ’ ; ; 4 /" 3 4
’
’ § ) e Vo P, ’ y
’ ’ LS /
’ 7 > 7 ’ ¢ 7 7
/ r g ’ Pt 4 s / 7
f P 7 ok ’ ’ J Y ’ y
¢ 7 ¥ ,
’ 4 k ’ & s 7
/ 7 Fes ’ g / z
’ ’ ’
’ L ’ ;
¢ / ’ ’ 7 7
. ’ ” 7 ’
% ’, o 7y ’ .
/ 2 Va
7, ’ ’ ’ v
7 X4 ’ 7
’ ‘ s
’ ’ 4
r 4 y
(4 /
5 ’
’ 0 ’ ’
; ’ 7
i ’ ’ s
: ’ o ,
’
’ / g
P
s
’ ’
Z ’
2 : : ¥
> 2 ’ ’ 3 7 P
p A <
% v ’ Z 3
- ’ £ £
’ Pl
’ Z ’
5 7
3 ’

Photo by Casey Horner on Unsplash


https://unsplash.com/@mischievous_penguins?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/photos/O0R5XZfKUGQ?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

/
' : ’ 4 /
) : , /
/ / ) / /
/
v ' / A / /
/
[ ] / " ’ ’
/ - ;
/ 4 / /
' ’ /
g /
vy ' / ; / /
/
, ® il / ;
: 4 / ' / /
/ /
| /
? /
/
4 4 / /
/ / / /
/ / /
U f ‘ / ’
/ ’ 7 /
’ /
/ ’ /
/ ’ 2 1
‘ ' Y ’ ; ’ / /
; /
P C ! ’ / /
s ' / /
. ’ / Vi /
. s ’ ’ /
rAR g 7 /
p . Z v ! p
~ * ; ‘ - - : ‘o ° : W8,
. . . AR ' ‘ 55 ‘ / ’ ’ ’ / / /
. b ’ ' ¢ ) ' 4 ’ : ’ ; Vo, ; / / / 7
. . P / / /
& ¢ ’
y b ; ¢ ) . { ¥ ; 4
. P 5 /
. . ¢ ’ ’
. v ’ / / /
y A ’ /
2 Gl A L / ’ 7
¢ B 3 v ’ / ‘
g § ) / ’ ’
v ./ ’ 4 : ’ 250 ’ / ’ 7
. ; ; ; / A / ; / e ’ 7
. . v ’
o » v . . ey ’ 4 / yosl ’ 4
’
: . ¢ = ‘ ‘ 1 4 ‘ . ’ / E ’ ; ’ 5 7 2% 7 5
. /
# ’
-
/
. /
Y / ’
. /
/
/ / 7
. . /
2 .
/ 7
2 ’
5 ’
. . /
W .
/ ’
a /
’
s
L ’ 7
. 5 ! /
- ’ ;
’
.
.
s
. - " ’I
o 3 4.
»
x . v /
- J
’ s
L4 ’
- > 0 5
By LRy
. % J ’
F > o / P s
. v 7 s’ s
’ ’ ¢
- » 7
. ‘e % ’ ’
s )
L4 ’
.o 7
.
v ” Vi ’
.
. ,
’
.
4 ’
. ’
. 4 4
,
/
. ’
s
& ’ 7’ / ’
. , .
Z ’
. S 5 I' v 3
4 7
. 7 e
a ¢ # 2
. 5 ,
% ’
’ Pl
’ Z ’
5 7
’

Photo by Casey Horner on Unsplash



https://unsplash.com/@mischievous_penguins?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/photos/O0R5XZfKUGQ?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Why is choosing your research
question the first step?

® \\Ve're not observing users just for the sake of observing
users!

® \Ve want to learn things that will be usetful for our

language, environment, or tool design process.

® How can assess whether our study design is helping us
answer our key design questions if we haven't actually
identified our key design questions?



Three Categories of User Study RQs

Need Finding Study

What are interesting problems to solve?

Formative Study

For a given problem, what are promising ?

Evaluative Study

For a given problem, now that we've implemented a , did it work?



Three Categories of User Study RQs

f} Need Finding Study

| . . | This week's topic
. What are interesting problems to solve?

Formative Study

For a given problem, what are promising ?

Evaluative Study

For a given problem, now that we've implemented a , did it work?



Shape ot a Need Finding RQ

What kinds of problems does <description of audience>
face during ?

For this class, usually...

What kinds of problems does <description of audience> face
during ?



YA Grace Mallon
@GraceMallon3

PhD student, ¢.2020: Here's a
imited argument | made based

on years of specialized research.
Hope it's OK &

Philosopher dude, ¢.1/70: Here
are some Thoughts | had Iin the
Bath. They constitute Universal
& Self-Evident Laws of Nature.

FIGHT ME.



Need Finding for PL

COMMUNICATIONS

OF THE

ACM

Home / Magazine Archive / August 2021 (Vol. 64, No. 8) / PL and HCI: Better Together / Full Text

HOME | CURRENT ISSUE NEWS BLOGS OPINION | RESEARCH PRACT

REVIEW ARTICLES

PL and HCI: Better Together

By Sarah E. Chasins, Elena L. Glassman, Joshua Sunshine
Communications of the ACM, August 2021, Vol. 64 No. 8, Pages 98-106
10.1145/3469279

Comments

vewas: B [0 € 1B SHARE: @ & @ Lf]

d < In the last 10 years, the computer science (CS) community has
developed novel programming systems that are transforming our
world. Data journalists are wielding new programming tools to
enrich many major media outlets with interactive visualizations.
Microsoft Excel, the primary data programming environment for
hundreds of millions of people, now comes with a program
synthesis tool that helps users clean and transform their data,

anarine them from writine nainfill enreadcheet formiilae Thece




“If | had asked people what they wanted,
they would have said faster horses.”

® Need finding is not about asking participants what they
want and then doing what they say they want.

® Need finding isn't even part of the brainstorming process!
We're not deciding what to build or design here. We're

just doing what the name says—finding needs.
® \We're finding problems. We'll brainstorm solutions later.
® Good need finding also typically doesn’t involve asking

people what they want.



Show, Don’t Tell

® \Ve want to structure our need finding interactions so that users show, don't tell. Why?
® We could miss true things. Users don't know all their needs! There are some that we could
observe that they’'d never notice themselves.
® We could learn false things. Memory and introspection unreliable. (Startlingly reliable

results in psych.)
® We could learn true things poorly.
need.

Casy to come away with a shallow understanding of a

® Our number 1 need finding tool is observation—just watching participants do their

thing

® Enforces this show-don't-tell idea very naturally

® Unless you have very, very good reasons not to do contextual inquiry, | usually recommena

starting there!



P Observation

® \Watch a participant using their current programming tools.
® \Where do they struggle or get frustrated?
® \Where do they do things you'd do differently?
® \Where do they have to hop out of their programming environment and look elsewhere or use an

extra tool?
® \Where do they have an established workaround for a given issue?
® Give a participant a new programming tool, then look for the same questions. (Especially for

looking for learnability needs! Not usually a good fit for other need finding goals.)
® Give a participant similar tasks with multiple programming tools, same questions.
® Attend meetings with participants.
® | know, | know, boring. But...
® \What concepts, information, data do they pull to mind, express, or draw easily? Which are hard?

® \What goals do they express that they haven't tackled yet. Why?
® Especially useful for working with non-programmers



Contextual Inquiry for PL

Cl is the one where we watch people doing their
thing. We ask about their actions when we get
confused, when we don't follow. But mostly we're
trying to learn about their process. This is wildly
usetful for PL design.



Contextual Inquiry for PL

Developers Ask Reachability Questions

Thomas D. LaToza
Institute for Software Research
School of Computer Science
Carnegie Mellon University

tlatoza@cs.cmu.edu

ABSTRACT

A reachability question is a search across feasible paths through a
program for target statements matching search criteria. In three
separate studies, we found that reachability questions are common
and often time consuming to answer. In the first study, we ob-
served 13 developers in the lab and found that half of the bugs
developers inserted were associated with reachability questions. In
the second study, 460 professional software developers reported
asking questions that may be answered using reachability ques-
tions more than 9 times a day, and 82% rated one or more as at
least somewhat hard to answer. In the third study, we observed 17
developers in the field and found that 9 of the 10 longest activities
were associated with reachabilitv questions. These findines sug-

Study 1. Observed 13
developers, tasks set by
researchers, unfamiliar

codebase.
Study 3. Observed 17
developers, developers’
own tasks.

Brad A. Myers

Human Computer Interaction Institute
School of Computer Science
Carnegie Mellon University

bam@cs.cmu.edu

which in turn caused half of the reported bugs [15]. Successfully
coordinating dependencies among effects in loosely connected
modules can be very challenging [5].

To better understand how developers understand large, complex
codebases, we conducted three studies of developers’ questions
during coding tasks. Surprisingly, we discovered that a significant
portion of developer’s work involves answering what we call
reachability questions. A reachability question is a search across
all feasible paths through a program for statements matching
search criteria. Reachability questions capture much of how we
observed developers reasoning about causality among behaviors
in a program.



Contextual Inquiry for PL

A Contextual Inquiry of Expert Programmers in an
Event-Based Programming Environment

Observed 4 developers,
completed a total of 12
hours of contextual inquiry

Amy J. Ko
Human-Computer Interaction Institute
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213 USA
ajko@cmu.edu

(broken into 12 separate
sessions). Course-provided
tasks.

ABSTRACT

Event-based programming has been studied little, yet recent
work suggests that language paradigm can predict
programming strategies and performance. A contextual
inquiry of four expert programmers using the Alice 3D
programming environment was performed in order to
discover how event-based programming strategies might be
supported 1n programming environments. Various
programming, testing, and debugging breakdowns were
extracted from observations and possible programming
environment tools are suggested as aids to avoid these
breakdowns. Future analyses and studies are described.

Ry - . e

METHOD

Participating programmers were enrolled in the “Building
Virtual Worlds” course offered at Carnegie Mellon
University. The course requires collaborations among
programmers, modelers, sound engineers, and painters to
create a new interactive 3D world every two weeks using
Alice (see Figure 1). Alice provides a limited object model,
global event handlers, and a strictly enforced structured
editor, preventing all syntax errors.

Four expert programmers were recruited and observed
during the second half of the semester, after the
programmers were experienced with Alice. Other than

Alire thae lanct avnrnart neraarammar had avrneriancae wxrith 2




Semi-Cl Observation tor PL

How Statically-Typed Functional Programmers Write Code | el TERbEEELE S
15 researcher-conducted

JUSTIN LUBIN, University of California, Berkeley, USA study sessions (researcher-

SARAH E. CHASINS, University of California, Berkeley, USA selected tasks, participant-
selected langs) and 15

recorded programming
sessions from livestreaming

How working statically-typed functional programmers write code is largely understudied. And yet, a better
understanding of developer practices could pave the way for the design of more useful and usable tooling, more
ergonomic languages, and more effective on-ramps into programming communities. The goal of this work is .
to address this knowledge gap: to better understand the high-level authoring patterns that statically-typed websites.
functional programmers employ. We conducted a grounded theory analysis of 30 programming sessions o
practicing statically-typed functional programmers, 15 of which also included a semi-structured interview. T2
theory we developed gives insight into how the specific affordances of statically-typed functional programiing
affect domain modeling, type construction, focusing techniques, exploratory and reasoning strategies, and
expressions of intent. We conducted a set of quantitative lab experiments to validate our findings, including that
statically-typed functional programmers often iterate between editing types and expressions, that they often
run their compiler on code even when they know it will not successfully compile, and that they make textual
program edits that reliably signal future edits that they intend to make. Lastly, we outline the implications of our
findings for language and tool design. The success of this approach in revealing program authorship patterns
suggests that the same methodology could be used to study other understudied programmer populations.

CCS Concepts: « Human-centered computing — HCI theory, concepts and models; « Software and
its engineering — Functional languages.

Additional Key Words and Phrases: static types, functional programming, grounded theory, need-finding,
interviews, qualitative, quantitative, mixed methods, randomized controlled trial



Semi-Cl Observation tor PL

18 participants, 12

households. Home tour (!!
Exploring End User Programming Needs in Home Automation followed by a think-aloud

JULIA BRICH, MARCEL WALCH, MICHAEL RIETZLER, and MICHAEL WEBER, study using one of two

Ulm University home automation
FLORIAN SCHAUB, Ulm University, Carnegie Mellon University, and University of Michigan

programming paradigms.
(Researcher-assigned

Home automation faces the challenge of providing ubiquitous, unobtrusive services while empowering users tasks.)
with approachable configuration interfaces. These interfaces need to provide sufficient expressiveness to
support complex automation, and notations need to be devised that enable less tech-savvy users to express
such scenarios. Rule-based and process-oriented paradigms have emerged as opposing ends of the spectrum;
however, their underlying concepts have not been studied comparatively. We report on a contextual inquiry
study in which we collected qualitative data from 18 participants in 12 households on the current potential
and acceptance of home automation, as well as explored the respective benefits and drawbacks of these two
notation paradigms for end users. Results show that rule-based notations are sufficient for simple automation
tasks but not flexible enough for more complex use cases. The resulting insights can inform the design of
interfaces for smart homes to enable usable real-world home automation for end users.

CCS Concepts: ® Human-centered computing - Empirical studies in interaction design; Ubiqui-
tous and mobile computing systems and tools; ® Software and its engineering — Software notations and
tools;

Additional Key Words and Phrases: Configuration interfaces, contextual inquiry, qualitative analysis, smart
home

ACM Reference Format:
Julia Brich, Marcel Walch, Michael Rietzler, Michael Weber, and Florian Schaub. 2017. Exploring end user

A NN N Y a ra Yy e



How else can we observe in PL
contexts?



Non-Cl Observation tfor PL

L. LOUCA', A. DRUIN, D. HAMMER, D. DREHER

STUDENTS' COLLABORATIVE USE OF COMPUTER-

BASED PROGRAMMING TOOLS IN SCIENCE:
A DESCRIPTIVE STUDY

Submitted to CSCL Conference 2003

Abstract: This paper presents a small-scale study investigating the use of two different computer-based
programming environments (CPEs) as modeling tools for collaborative science learning with fifth grade
students. We analyze student work and conversations while working with CPEs using Contextual Inquiry.
Findings highlight the differences in activity patterns between groups using different CPEs. Students using
Stagecast Creator (SC) did twice as much planning but half as much debugging compared with students
using Microworlds (MW). Students working with MW were using written code on the computer screen to
communicate their ideas whereas students working with SC were using the programming language to talk
about their ideas prior to any programming. We propose three areas for future research. (1) Exploring
different types of communication styles as compared with the use of different CPEs. (2) Identifying students'
nascent abilities for using CPEs to show functionality in science. (3) Further understanding CPEs’ design
characteristics as to which may promote or hamper learning with models in science.

+4 iz aa Va2 als o Fats

Observed student users
of two different
programming tools,
identified differences in
how they spent their time.
Observed 9 5th graders in
science class. Not

previously familiar with the
programming

environments. 10
meetings of 45-60 minutes
with the whole group.
Students split into 3
groups of 3 to work with
the programming tools.




How Should Compilers Explain Problems to Developers?

Titus Barik Denae Ford
Microsoft NC State University
Redmond, WA, USA Raleigh, NC, USA
titus.barik@microsoft.com dford3@ncsu.edu

ABSTRACT

Compilers primarily give feedback about problems to developers
through the use of error messages. Unfortunately, developers rou-
tinely find these messages to be confusing and unhelpful. In this
paper, we postulate that because error messages present poor ex-
planations, theories of explanation—such as Toulmin’s model of
argument—can be applied to improve their quality. To understand
how compilers should present explanations to developers, we con-
ducted a comparative evaluation with 68 professional software de-
velopers and an empirical study of compiler error messages found
in Stack Overflow questions across seven different programming
languages.

Our findings suggest that, given a pair of error messages, devel-
opers significantly prefer the error message that employs proper
argument structure over a deficient argument structure when nei-
ther offers a resolution—but will accept a deficient argument struc-
ture if it provides a resolution to the problem. Human-authored
explanations on Stack Overflow converge to one of the three argu-

ot cbrisnttivrac: Flhhaca Fhat riracrtAdae a vracaliiftan #4 +ha arvrar ctvmanla

Chris Parnin

NC State University
Raleigh, NC, USA
cjparnin@ncsu.edu

Emerson Murphy-Hill
NC State University
Raleigh, NC, USA
emerson@csc.ncsu.edu

1 INTRODUCTION

Compilers primarily give feedback about problems to developers
through the use of error messages.' Despite the intended utility of
error messages, researchers and practitioners alike have described
their output as “cryptic” [44], “difficult to resolve” [44], “not very
helpful” [48], “appalling” [5], “unnatural” [6], and “basically impe
etrable” [40].

While poor error messages are paralyzing for novices, evendxpe-
rienced developers have substantial difficulties when comprehend-
ing and resolving them. A study conducted at Google found that
nearly 30% of builds fail due to a compiler error, and that the median
resolution time for each error is 12 minutes [38]. Surprisingly, the
costly errors that developers make are rather mundane, relating to
basic issues such as dependencies, type mismatches, syntax, and
semantic errors. Barik et al. [2] conducted an eye-tracking study
with developers and found that they spent up to 25% of their task
time on reading error messages. In addition, developers in a study
by Johnson et al. [19] reported that error messages were often not

s1oofii]l harmatien #hasr Aid ot adacniintalsr ovinlasym #ha vrahlara

Non-Cl Observation tfor PL

Stack Overflow is a record
of real questions and

confusions that programmers

encounter in their practice.
Votes on answers offer
evidence of what kinds of
responses are helpful to
them. This is kind of a log of
observations! How can we
use this info to improve
compiler error messages,
which also offer feedback
when programming tasks go
wrong?




An Empirical Study of Goto in C Code from GitHub
Repositories

Meiyappan Nagappan', Romain Robbes?, Yasutaka Kamei®, Eric Tanter?,
Shane Mclintosh¢, Audris Mockus®, Ahmed E. Hassan®
'Rochester Institute of Technology, Rochester, NY, USA; “Computer Science Department (DCC),
University of Chile, Santiago, Chile; *Kyushu University, Nishi-ku, Japan; “McGill University, Montreal,
Canada; *University of Tennessee-Knoxville, Knoxville, Tennessee, USA; “Queen’s University,
Kingston, Ontario, Canada
‘mei@se.rit.edu, *{rrobbes, etanter}@dcc.uchile.cl, *kamei@ait.kyushu-u.ac.jp,

‘shanemcintosh@acm.org, “audris@utk.edu, “ahmed@cs.queensu.ca

ABSTRACT

It is nearly 50 years since Dijkstra argued that goto ob-
scures the flow of control in program execution and urged
programmers to abandon the goto statement. While past
research has shown that goto is still in use, little is known
about whether goto is used in the unrestricted manner that
Dijkstra feared, and if it is *harmful’ enough to be a part of
a post-release bug. We, therefore, conduct a two part em-
pirical study - (1) qualitatively analyze a statistically rep-
resentative sample of 384 files from a population of almost
250K C programming language files collected from over 11K
GitHub repositories and find that developers use goto in C
files for error handling (80.21+5%) and cleaning up resources
at the end of a procedure (40.36 £ 5%); and (2) quantita-
tively analyze the commit history from the release branches
of six OSS projects and find that no goto statement was re-
moved/modified in the post-release phase of four of the six
projects. We conclude that developers limit themselves to
using goto appropriately in most cases, and not in an un-
restricted manner like Dijkstra feared, thus suggesting that
goto does not appear to be harmful in practice.

Harmful [11]. This is one of the many works of Dijkstra
that is frequently discussed by software practitioners [25]
and researchers alike (more than 1,300 citations according
to Google Scholar and almost 4000 citations according to
ACM Digital Library as of Aug 15, 2014). This article has
also resulted in a slew of other articles of the type global
variables considered harmful [32], polymorphism considered
harmful [24], fragmentation considered harmful [16], among
many others. In fact, Meyer claims that as of 2002, there
are thousands of such articles, though most are not peer-
reviewed [15].

Indeed, Dijkstra’s article [11] has had a tremendous im-
pact. Anecdotally, several introductory programming courses
instruct students to avoid goto statements solely based on
Dijkstra’s advice. Marshall and Webber [19] warn that when
programming constructs like goto are forbidden for long
enough, they become difficult to recall when required.

Dijkstra’s article on the use of goto is based on his de-
sire to make programs verifiable. The article is not just an
opinion piece; as Koenig points out [7], Dijkstra provides
strong logical evidence for why goto statements can intro-

Non-Cl Observation tfor PL

GitHub might not be a log of
actual user behavior, but at
least it's a log of the

programs they end up with...



How

else might we observe people

programming to find needs?

® |n-lab observation, observation with assigned tasks as opposed to users’ own

® Found logs—stac

<overtlow, github, so on

® You can instrument a programming environment to log various user actions
® But don't be creepy! (Easy to get intrusive with tracking)
® |n a course context, you can instrument the automatic test infrastructure, if

applicable

® These days people stream themselves programming! You can watch those
® More ideas? Raise hand.



Show, Don’t Tell..the next best thing

® |f you really can't manage contextual inquiry, can you set up another way to do
observation?

® Ok, if you really can't manage observation, what next?

® Get concrete. It gets us closer to “showing”

II I/ 4
‘ ) ) - N\ aldaVea aalaalla¥Ya - -
7\ C SIRY LTI YAVAY WARVAVEN® - - y oo .

® “In your most recent programming project, what was the most frustrating part? Can you
walk me through how it came up? Why it was frustrating? How you ultimately dealt with
it?"
® Get open-ended. Yes/No answers don't give us a lot. Stories give us much more.
®
® “Have you found that some programming tasks are much easier in different programming
languages? Can you tell me about the last time you found one of these and how?”



Alternatives to Contextual

Semi-structured interview

| N q U | ry 'FO r P I_ to identify possible issues in

the programming process,

followed by survey to collect
quantitative evidence of

issues uncovered in
interviews.

Variolite: Supporting Exploratory Programming
by Data Scientists

Mary Beth Kery Amber Horvath Brad Myers
School of Computer Science Oregon State University School of Computer Science
Carnegie Mellon University Corvallis, Oregon, USA Carnegie Mellon University
Pittsburgh, PA horvatha@oregonstate.edu Pittsburgh, PA
mkery@cs.cmu.edu bam@cs.cmu.edu

ABSTRACT

How do people ideate through code? Using semi-structured
interviews and a survey, we studied data scientists who
program, often with small scripts, to experiment with data.
These studies show that data scientists frequently code new
analysis ideas by building off of their code from a previous

idea. They often rely on informal versioning interactions
likte convino code leenino 1mmneed code and commentino

driverTest.py
> P (» variants

import matplotlib.pyplot as pyplot
import numpy as np
import math

B Distancel B Distance2 B Distance3

def distance(x0, y@, x1, yl):
retiurn math cart((x1-¥B)xk? + (v1—-vD)%x?)



Alternatives to Contextual
Inquiry for PL

Enabling Data-Driven API Design with Community Usage
Data: A Need-Finding Study

Tianyi Zhang', Bjorn Hartmann?, Miryung Kim/, Elena L. Glassman'
"Harvard University, MA, USA
SUC Berkeley, Berkeley, CA, USA

IUC Los Angeles, Los Angeles, CA, USA
{tiany1, eglassman } @seas.harvard.edu, bjoern@berkeley.edu, miryung @cs.ucla.edu

ABSTRACT

APIs are becoming the fundamental building block of modern
software and their usability is crucial to programming effi-
ciency and software quality. Yet API designers find it hard
to gather and interpret user feedback on their APIs. To close
the gap, we interviewed 23 API designers from 6 companies
and 11 open-source projects to understand their practices and
needs. The primary way of gathering user feedback is through

bug reports and peer reviews, as formal usability testing is
nrohibhitivelv exnen<ive to condinet 1n nractice Particinante

tions to computers.! The use of APIs is ubiquitous, powering
software applications, systems, and web services in nearly
every domain. Given the increasing number and complexity of
APIs, learning and using APIs is becoming a common activity
and a key challenge in modern programming [27, 47, 48, 40].

User-centered design can produce usable APIs with great clar-
ity, learnability, and programming efficiency [40, 39, 52]. Tra-
ditional usability testing methods such as user studies are often
deemed too expensive to conduct during API design [19]. For



Alternatives to Contextual
Inquiry for PL

How Domain Experts Create Conceptual Diagrams and

Implications for Tool Design

Dor Ma’ayan © Wode Ni © Katherine Ye Chinmay Kulkarni> Joshua Sunshine’

'Technion - Israel Institute of Technology *Carnegie Mellon University
Haifa, Israel Pittsburgh, PA
dormal (0@ campus.technion.ac.il woden, kqy, chinmayk, sunshine@cs.cmu.edu

Ks (0) I -3 (mod 8) (d)

________________________

3-5 (mod 8)

--_____.-----_’__ __________________

,7

DIO000
D000 O
D00 OO

D00 00O

DO000




Show, Don’t Tell

® Surveys — are they out?
® No! But we have to find ways to get them to “show” via the survey.
® Don't ask how often they use construct A, ask them to upload their last program so you

can count uses of A

Can We Crowdsource Language Design?

Preston Tunnell Wilson* Justin Pombrio Shriram Krishnamurthi
Brown University Brown University Brown University
ptwilson@brown.edu justinpombrio@cs.brown.edu sk@cs.brown.edu
Abstract (Community input processes are clearly a hybrid, but at best

Most programming languages have been designed by com-
mittees or individuals. What happens if, instead, we throw
open the design process and let lots of programmers weigh in
on semantic choices? Will they avoid well-known mistakes
like dynamic scope? What do they expect of aliasing? What
kind of overloading behavior will they choose?

We investigate this issue by posing questions to program-
mers on Amazon Mechanical Turk. We examine several lan-
guage features, in each case using multiple-choice questions
to explore programmer preferences. We check the responses
for consensus (agreement between people) and consistency
(agreement across responses from one person). In general
we find low consistency and consensus, potential confusion
over mainstream features, and arguably poor design choices.
In short, this preliminary evidence does not argue in favor
of designing languages based on programmer preference.

CCS Concepts Software and its engineering — Gen-
eral programming languages; -Social and professional
topics — History of programming languages;

Keywords crowdsourcing, language design, misconceptions,

11cor octiidiec

they only suggest changes, which must then be approved by
“the designers”.)

There are fewer examples of language design conducted
through extensive user studies and user input, though there
are a few noteworthy examples that we discuss in section 11.
None of these addresses comprehensive, general-purpose
languages. Furthermore, many of these results focus on
syntax, but relatively little on the semantics, which is at least
as important as syntax, even for beginners [11, 31].

In this paper, we assess the feasibility of designing a lan-
guage to match the expectations and desires of programmers.
Concretely, we pose a series of questions on Amazon Me-
chanical Turk (MTurk) to people with programming experi-
ence to explore the kinds of behaviors programmers would
want to see. Our hope is to find one or both of:

Consistency For related questions, individuals answer
the same way.
Consensus Across individuals, we find similar answers.

Neither one strictly implies the other. Each individual could
be internally consistent, but different people may wildly

What do you think a NEW programming language would produce for this program?

func f():
a = 14

func g():
a = 12

O

g()
print(a)

0 N N U1 v W N =

14

12

Error

Other

B @

0 @ &



Show, Don’t Tell

Research Question: Are there gaps between program semantics and programmer expectations about semantics?

Tell version. "Describe some language features that you find surprising.”

Tell version. “"Do you expect a new programming language to have static or dynamic scope?”
Show version. “What output do you expect here?” “And here?”

Outcome: Programmers weren’t consistent! In one program (survey question) they'd give answer consistent with static
scope, in another with dynamic scope.

Is this successful need finding? Yes! We didn’t find a solution—we can’t say ok, use static scope and programmers
won't be surprised anymore. But that’s not the goal! The goal is to find problems, not solutions.

Goal isn’t even to find out what programmers want, even though the questions may make it look like that. (Remember,

asking is a bad way to figure that out...) It was to learn about mismatches between semantics and expectations, and by
finding programmer inconsistency they found mismatches.

And this inconsistency is another reason we don’t just ask what people want. :)

topics — History of programming languages;
Neither one strictly implies the other. Each individual could
be internally consistent, but different people may wildly

Keywords crowdsourcing, language design, misconceptions,



You Can aSk llWOUld” This question is my

number 1 trick for
getting to useful

questions...but be careful e

discussions with social
scientists when | don’t
have time for a full

® Audience matters contextual inquiry

, : : : process with them!
® |f you're working with novice programmers or non-programmers...

® \Mhat-would-voutiketoautomatethat vou-dontautomaterahtrow2-
® “\What would you do it you had 100 interns for the next three months?”
® And programmers aren’t great at “would” questions either...

‘ 1" vAv A A A A Y A .

L/ V V UL/ 1 1 \ L/ ./

AlNaAYAa AAlAA AVAa A a ATATIAAVYAYN A AVYa ) "
N/ \.J \L/ L/ \_/ \/

® “This menu is in a bad place, this font is too small, this pane should be on the other side...”
® |t's not that no one should be collecting this feedback or that we shouldn’t solve problems
ike these. But if you're in this class, | suspect this isn't the class of user input you're seeking!
® And remember that these questions are for revealing hopes and dreams, don't necessarily
retlect how they'd actually act
® But difference between actions and hopes/dreams can be revealing!




Assignment 2: Show, Don't Tell

® Assignment 2
® |deally, go out in the world and watch people do their work in context! It not possible, watch their work
on Zoom. Don't let the design of Assignment 2 make you think an interview is a substitute for that

process
® During the Assignment 2 work time, see if you can find a way to make your session not about an interview
but about watching them do their work/hobby/task that you want to study, with occasional interruptions
for you to learn about what they're doing,.
® |f their task is computer-based, can they screen share?
® |f their task is non-computer based, can they point the camera at it?
® Suggested structure:
® Describe the kinds of tasks you're interested in observing.
® Ask the participant to teach/show you how they do those tasks. Interrupt when something happens
that you don’t understand.
® |n the last 10 or 15 minutes, run your observations by the participant to see what you got right or wrong
about their process.
® Also highly encourage reading Thursday’s reading betore tinalizing your design!







