Fvaluation

CS294-184: Building User-Centered Programming Tools UC Berkeley Sarah E. Chasins

Evaluation Week, Day 1




Plan tfor today

A structured conversation about the relationship
between today’s reading and our role as PL+HCI
researchers



WHATDO YOU MEAN

. -l
- -
' \ 'y \ 3

mmﬂ usability studies?

R -t d -

Evaluating User Interface Systems Research

Dan R. Olsen Jr.
Brigham Young University
Computer Science Department, Provo, Utah, USA
olsen@cs.byu.edu,

ABSTRACT

The development of user interface systems has languished
with the stability of desktop computing. Future systems,
however, that are off-the-desktop, nomadic or physical in
nature will involve new devices and new software systems
for creating interactive applications. Simple usability
testing is not adequate for evaluating complex systems. The
problems with evaluating systems work are explored and a
set of criteria for evaluating new Ul systems work is
presented.

ACM Classification Keywords
H.5.2 User Interfaces

General Terms:
Human Factors

Author Keywords:
User Interface Systems Evaluation

INTRODUCTION

In the early days of graphical user interfaces, the creation of
new architectures for interactive systems was a lively and
healthy area of research. This has declined in recent years.
There are three reasons for this decline in new systems

WHY Ul SYSTEMS RESEARCH?

Before addressing the evaluation question we must first
consider the value of user interface systems research. The
systems we have are stable. Applications are being written.
Work is progressing. The users are happy (sort of). Why
then does the world need yet another windowing system?

Forces for change

A very important reason for new Ul systems architectures is
that many of the hardware and operating system
assumptions that drove the designs of early systems no
longer hold. Saving a byte of memory, the time criticality of
dispatching an input event to the right window or lack of
CPU power for geometric and image transformations are no
longer an issue. Yet those assumptions are built into the
functionality of existing systems. The constraints of screen
size are rapidly falling and we are finding that interaction in
a 10M pixel space is very different from interaction in a
250K pixel space.

Our assumptions about users and their expertise have
radically changed. Most of our windowing systems are
designed to deal with a populace who had never used a
graphical user interface. That assumption is no longer valid.
The rising generation is completely comfortable with

This paper played a big role in the HCI
community in broadening the classes of
evaluations considered acceptable,

including no-evaluation papers.

What's this to do with us?

® A |ot of parallels to evaluating PLs. (In
your head, replace “Ul system” or “Ul
toolkit” with “PL" and see how many
observations still hold.)

® Framework for how to think about
meaningfully evaluating complex design
contributions

Thank Amy Ko for these insights, and check
out her work for more of the same!



Value added by Ul systems
architecture (...and PLsl!)

Reduce development viscosity

| east resistance to good solutions
Lower skill barriers

Power in common infrastructure
Enabling scale



Fvaluation Errors

® The usability trap
® The fatal flaw fallacy
® | egacy code

 LEGACY/CODE

)

\ - OUTGOING
DRV
%




Usability Trap

Common measures

® Time to complete standard task
® Time to reach proficiency

® Number of errors

Sound familiar?



CHI 2008 Proceedings - Usability Evaluation Considered Harmful?

April 5-10, 2008 - Florence, Italy

Usability Evaluation Considered Harmful
(Some of the Time)

Saul Greenberg
Department of Computer Science
University of Calgary
Calgary, Alberta, T2N 1N4, Canada
saul.greenberg(@ucalgary.ca

ABSTRACT

Current practice in Human Computer Interaction as
encouraged by educational institutes, academic review
processes, and institutions with usability groups advocate
usability evaluation as a cntical part of every design
process. This is for good reason: usability evaluation has a
significant role to play when conditions warrant it. Yet
evaluation can be ineffective and even harmful if naively
done ‘by rule’ rather than ‘by thought’. If done during carly
stage design, it can mute creative ideas that do not conform
to current interface norms. If done to test radical
innovations, the many interface issues that would likely
arise from an immature technology can quash what could
have been an inspired vision. If done to validate an
academic prototype, it may incorrectly suggest a design’s
scientific worthiness rather than offer a meaningful critique
of how it would be adopted and used in everyday practice.
If done without regard to how cultures adopt technology
over time, then today's reluctant reactions by users will
forestall tomorrow's ecager acceptance. The choice of
evaluation methodology — if any — must arise from and be
appropriate for the actual problem or research question
under consideration.

Author Keywords
Usability testing, interface critiques, teaching usability.

ACM Classification Keywords
H5.2. Information interfaces and presentation (e.g., HCI):
User Interfaces (Evaluation/Methodology).

In 1968, Dijkstra wrote ‘Go To Statement Considered

Bill Buxton
Principle Researcher

Microsoft Research
Redmond, WA, USA
bibuxton@microsoft.com

INTRODUCTION

Usability evaluation is one of the major cornerstones of
user interface design. This 1s for good reason. As Dix et al.,
remind us, such evaluation helps us “assess our designs and
test our systems to ensure that they actually behave as we
expect and meet the requirements of the user” [7]. This 1s
typically done by using an evaluation method to measure or
predict how effective, efficient and/or satisfied people
would be when using the interface to perform one or more
tasks. As commonly practiced, these usability evaluation
methods range from laboratory-based user observations,
controlled user studies, and/or inspection techniques
[7,22,1]. The scope of this paper concerns these methods.

The purpose behind usability evaluation, regardless of the
actual method, can vary considerably in different contexts.
Within product groups, practitioners typically evaluate
products under development for ‘usability bugs’, where
developers are expected to correct the significant problems
found (i.c., iterative development). Usability evaluation can
also form part of an acceptance test, where human
performance while wusing the system 1is measured
quantitatively to see if it falls within an acceptable criteria
(c.g., time to complete a task, error rate, relative
satisfaction). Or if the team 1s considering purchasing one
of two competing products, usability evaluation can
determine which is better at certain things.

Within HCI research and academia, researchers employ
usability evaluation to validate novel design ideas and
systems, usually by showing that human performance or
work practices are somechow improved when compared to

Another take on the usability trap, well worth a read
® Usability eval as weak science
® Do we end up picking problems and solutions that

are amenable to these evals rather than picking
research question, then choosing eval that fits?
® \Ve often do this rather than testing risky
hypothesis.
® Using usability eval too early
® Quashing cool ideas by testing for usability before
they’re usable, even it they have promise
® Consider too few ideas; many parallel ideas
standard in other design and engineering fields
® |nnovation, Cultural Adoption
® Usable vs. useful
® Discovery: find facts about the world

® |nhnovation, invention: create new and useful
things
® Many very useful inventions (e.qg., cars) started out

oretty unusable
® Even our best inventors often don't anticipate how
culture will use the inventions



L&

Let’s chat!

Common assumptions
® Walk up and use, minimal training
® Using doesn't require expertise, or if it requires specitic
expertise many people already have that expertise
® Standardized task assumption
® |[f we're going to compare across two systems, there has to be
an existing system that can already accomplish the task
® Scale of the problem
® Task usually needs to be completable in 1-2 hours



¥

Let’s chat!

The fatal flaw fallacy

Say every time someone proposes a new PL or new
abstraction, we try to find a program that can’t be
expressed with it. |s that a good way to evaluate?



¥

Let’s chat!

Legacy code

s it bad to propose new languages when people are
already so experienced with existing ones? When they
have so many libraries available? So much code
already written?



What else can we use to evaluate if PLs,
abstractions, programming systems,
programming tools contribute something

valuable?
It we won't eval , covering everything, and if we
allow we don’t have to be backwards compatible with all
legacy code?



For the next few slides, we're going to take
the reading’s contribution types one at a time.

In your groups, please brainstorm ways to
demonstrate these claims for PL/Programming
Systems contributions.



| recommend having the reading open in front of you if
possible, for inspiration. But | also recommend
brainstorming on your own before you refer back to it!

It you struggle to come up with ideas, try making it
more concrete. How would you assess this
contribution for work in the domain of your final
project? The final projects you critiqued last week?



importance

Before all other claims a system, toolkit or interactive
technique must demonstrate 1mportance. Tools are
invariably associated with expertise gained over time.
People will not discard a familiar tool and its associated
expertise for a 1% improvement. In most cases at least a
100% 1mprovement 1s required for someone to change
tools. Without establishing the importance of the problem
and 1ts proposed solution, nothing else matters.



Problem not
previously

solved

This 1s one of the more compelling claims for a tool. This
claim says that there i1s a STU context that has no current
solution. It 1s a powerful claim to demonstrate that T can be
performed effectively with a new tool. Usability testing is
irrelevant when comparing what can be done against what
cannot.




Generality

The new solution claim is much stronger if there are several
populations U; that each have tasks T; that do not have
effective solutions with existing technology. If the new tool
can solve all of T; then a claim for a general tool is quite
strong. The generality of the new solution claim 1is
strengthened as the populations U; are increasingly diverse
from each other.




Reduce solution
VISCOSIty

One of the important attributes of good tools is that they
foster good design by reducing the effort required to iterate
on many possible solutions. The more cumbersome the tool,
the greater the viscosity in the design process with fewer
and less diverse alternatives being explored. There are at
least three ways in which a tool can reduce solution
viscosity: flexibility, expressive leverage and expressive
match.




cmpowering
new design
participants

The previous set of claims focused on the speed or ease
with which a user interface could be designed. Tools can
also make a contribution by introducing new populations to
the UI design process. Frequently this 1s done by dealing
with expressive leverage and expressive match issues, but
the claims are different. The “new design participants”
claim 1is that there 1s some population U who would benefit
by being more directly involved with the UI design process.
It has long been claimed that empowering artists will lead
to better visual designs. Participatory design advocates the
involvement of end-users in the design process.




Power In
combination

Many tools demonstrate their effectiveness by supporting
combinations of more basic building blocks. There are two
basic variations of this claim. The first 1s an inductive claim
that an infinite set of solutions can be built from primitives
and their combinations. The second 1s the N to 1 reduction.
Both of these approaches are based on clearly defining
mechanisms for combining pieces of design to create a
more powerful whole.




Can it scale
up”?

An important question that must be asked of every new Ul
system 1s whether it can scale up to large problems. This
was the fundamental drawback of state machines for
describing user interface dialogs. For simple examples like
dragging a rubber-band line, the state machine dialog was
clear and direct. However, for any reasonable application
the representation acquired hundreds of states
interconnecting in hundreds of ways that were impossible to
visualize, present on a screen, or debug. Constraint systems
have similar problems. They nicely model small local
relationships yet produce serious debugging challenges
when hundreds of constraints are all being evaluated
simultaneously. Any new UI system must either show that
it can scale up to the size of realistic problems or that such
scaling is irrelevant because there 1s an important class of
smaller problems that the new system addresses. To
evaluate this criteria one must try the system on a
reasonably large problem and show that the advantages of
the new model still hold.




What do we get to claim?

® The fact that there are other ways to demonstrate value of
PL/Programming Systems contribution doesn’t mean we

get to make unsupported usability claims
® Demonstrating one of these contributions doesn’t mean
the tool is usable or that we get to make usability
claims without usability eval

® Don't get to make unsupported claims about these
alternative contributions either!
® But we do get to think creatively about how we
evaluate them



So why'd we do this?

® Usability isnt the only thing we can evaluate.
® Sometimes it's not practical to evaluate it for PLs.

® .. .but we have alternatives available! We don't have to just
give up on human factors evaluations.

® The range of options means we have to be thoughttul
about our goals, what we want to claim, what we evaluate



Takeaways

® Highly encourage you before designing an evaluation to
decide which of these dimensions (or others) about which
you want to make claims
® Sit down with the list, write out the specific claim
® Then design the eval



