Qualitative Formative
Research

CS294-184: Building User-Centered Programming Tools UC Berkeley Sarah E. Chasins

Formative Studies and Prototyping Week 1, Day 2

The following slides come from Andrew’s awesome talk
in an earlier version of this course (with adaptations by
me, so blame me for anything bad about them))!

Practical Prototyping for
Programming lools

Andrew Head, Postdoctoral scholar, UC Berkeley

Objectives

* What prototypes should | make to help
me find a good design”

« How should | collect feedback to
Improve my design?

uristics

ble whenever arx

from errors
es), precise

ely indicate the problem

age (0 cod!

cy, impact, porsmem,e
s before produ Jeased
ould be given hi
priority

1d be given 10!
is 2 v;\‘\\z\h\e on pm‘cr\

actcan bere
gh pr\m‘\ty

, S0 sh

e Heuristic Evaluation worksheet (1 per evaluator)

Exampl
Prototype lssuo.nmcvuh-nm “L‘\IH;I;CN,“‘;p Sv’v&'r\\y
! R | S X C P o (0-4)
Example St 5 1 A
1 Undo com mands unsupported. For instance, user controland |3 i
when deleting 2 sOng from a playlist, UNDOIs | freedom
gwyul out, S0 you must import the song again
Your turn 2 S s A
\/ Example Heuristic Evaluation worksheet (1 per evaluator) Ay
S e
l'"""”' R e 2 L g T
prototype Issue and evidencé Heuristic Name Severity
(0-4) #1, Vis|
e g E g SHl Thes
Example ; «V(vp“.v'j‘
G b Rl AP o e
1 | Undo commands ul\w\lppurh’(l For instance, user control and |3
when deleting a song from @ playlist, UNDO I8 freedom #2, Mat
greyed out, 50 you must import the sOn8 again TR
i il SIS e gty et rathe
Your turn. her t
5 e o 3 L e e et
nok o Meordh Y l.» #3. Use
/ Users o
leave th
o —] e redo
\ #4. Cor
Users s
thing, F

Who is this guy?

; il @ @Gather to: | I}y Clipboard | & Notebook | D Revisio
i 350

- bt LL.-. . 250
4
' 3 200
I 8
o g '
- i sk & i e
cospanyloc pd.ge - df('C pa nl«
. b - i « Type ¢ p_14
100 L bhoeigia = pd.aet. ummie
— .. coent;
£ = pd.c . Domp b0rigin, compeaaylocaticon
ot 0 V4o
m zop| [\xad\n k2owa 3 pec
ean'\nd xis = Pl
||“ 0 L T T L T T Ll colu ed|)
10 15 175 20 225 25 275 30 325 35 375 40 50
. o= modal melec port trai
- Rating
atizg', = sturas
! — 3') ’ :
T Lrain, y wraln
ol
acttmm——— om ree Lmport Decisiom eClas
Ten Decialoal sanit = apth=13)
ree. (X_traln raln)
. . . Jrep
— \ JIup ecind Teallans rlclans_we Sare, crite
! al predictjons = dtree.predict(X_test) . e o
e 4 ¥ _dw o U
AR azples lea sazples spli
o weight_frac eaf=0.3, preso
m— best’
- 2 s

Figure 3: Cleaning a notebook with code gathering tools. Over the course of a long analysis, a notebook will become cluttered and

inconsistent (1). With code gathering tools, an analyst can select results (e.g., charts, tables, variable definitions, and any other code output)
(2) and click “Gather to Notebook” (3) to obtain a minimal, complete, ordered slice that replicates the selected results (4).

Managing Messes in Computational Notebooks, CHI '18

Who is this guy?

o

~SN OO BW

9
10
11
12

14
15
16
17
18
19
20
21
22
23
24
25
26

28
29
30

~ oS

class Shape:

def __init_ (self, w, h):
self.w = w

self.h = h
self.description = "This shape has no
self.author = "Nobody has claimed to

def area(self):
return self.w *x self.h

def set_description(self, text):
self.description = text

def set_scale(self, scale):
self.w = self.w * scale
self.h = self.h % scale

class Square(Shape):
def __init__(self, w):
self.w = w
self.h = w

rectangle = Shape(100, 45)

print(rectangle.w,<Eectangle.hE}§

.t
an®
3
a®
s @
= v
.
aan®
a?®
e

n
an
a®
o

2
a®
.

Tutonal Editor X

Torii Tr ADD TEXT <> ADD SNIPPET ¥~ UNDO O e

(def __init__(self, w, h)g

Every time we go to create a new “Sha{)e" type variable in our program, the program @/
will look for the “init" of the shape class. From there, it will assign parameters to
class attributes using the body of the constructor.

(def __init__(self, w, h%

self.w=w
self.h = h
self.description = "This shape has not bee

To create a shape variable, we might write the following:

rectangle = Shape(90, 45)

In dot notation, you specify the object you're ting to access something from, follow

it with a ".", and then include the-ffame of tha attiruhta uauwan '
' VIEWAS SNIPPET PROGRAM SNAPSHOT

ad nglﬁ.m{'ectangle.lb
= ADD CONSOLE OUTPUT Q .

d

V

A

“

Embedded rich text editors
for writing prose.

Edits to code automatically
propagate across all snippets and
the source program.

Outputs update live by assembling
the tutorial's snippets in source
order and executing them.

Figure 4. Writing tutorials with Torii. Torii helps authors write tutorials by keeping source programs, snippets, and outputs consistent with each other, while
still letting authors organize the code in the tutorial flexibly. An edit to code anywhere in the tutorial workspace automatically triggers an update to clones of that
code in the source program and snippets, and to all outputs generated from that code.

Composing Flexibly-Organized Step-by-Step Tutorials from Linked Source Code, Snippets, and Output, CHI '18

Who is this guy?

Submissions Student Submission Feedback
® = feedback given : o e Sh iy g ;
- ow original Edit Show diff
b I — You can edit this code g Student error detected.
¢ = fix suggested def accumulate(combiner, base, n, term): This wrong answer can be "fixed" with the edits for submission 64 . This is the fix:
total = @
Submission 109 @ ’ while n > ©: :
total = combiner(total, term(n))
Submission 116 Q n -= def accumulate(combiner, base, n, term):
Submission 305 @ return combiner(base, total) - total = o
+ total = base
Submission 308 Q while n > @:
Submission 587 @ Run tests again totall= combiner(total, term(n))
n -=
Submission 593 Q return combiner(base, total)
Order by: Test results: Some tests failed + return total
SReon e Test Input Result Expected Output
Tosl case results @e npu esu Xpecte utpu « Apply this fix to the student's code
® Suggested fixes 11 (lambda x, y: x + y, 11, 5, lambda x: x), — 26 26
Another student with this same problem has already been given feedback. Do you want to use the
a 2 (lambda x, y: x + y, 9, 5, lambda x: x) 15 15 - feedback for them here?
Suggested fixes ’ fitet ’ ik
3 (lambda x, y: x * y, 2, 3, lambda x: x * x), L5 0 72 ~ Use existing feedback ~
Submission 12
lambda x, y: x + 11, ©, lambda x: x -: 11 11 -
Submission 17 . (L ¥s A) Notes Add
Submission 55 5 (lambda x, y: x + y, 11, 3, lambda x: x * x), —- 25 25
Submission 60
Submission 65 Print output (test case 1)

I o P S SN DR 7. 1

[This test case produced no console output.]

Figure 4. FIXPROPAGATOR interface: The left panel shows all of the incorrect submissions (A). When the teacher selects one, the submission is loaded
into the Python code editor in the center of the interface (B). Then the teacher can edit the code, re-run tests, and inspect results. The bottom of the
center panel shows the list of tests and console output (C). Once the teacher has fixed the submission, they add some hint that will be shown to current
and future students fixed by the same transformation. The bottom of the left panel shows submissions for which the system is suggesting a fix. When
the teacher selects a suggested fix, it is shown as a diff in the right panel (D). The teacher can reuse the previously written hint or create a new one (E).

Writing Reusable Code Feedback at Scale with Mixed-Initiative Program Synthesis, CHI '18

Design methods

Design methods

Design methods for

programming tools

THE DESIGN CYCLE

design

evaluate prototype

o

DESIGN IDEAS DIVERGE AND CONVERGE

hundreds! design
brainstorming
(evaluate prototypes are used to
ha answer questions about design.
ideas critique
project
done &

project progress

Objectives

* What prototypes should | make to help
me find a good design”

« How should | collect feedback to
Improve my design?

Don't look at me!

Discussion time

Think of anidea you had for a programming
sometime in the past that you were really
excited to work on.

What convincing evidence did you have that
It was agood idea?

1. Defer judgement

2. Encourage wild 1deas

3. Build on the 1deas of others
4. Stay focused on the topic

5. One conversation at a time
6. Be visual

7. Go for quantity

How do you know these

ideas are any good?

From IDEO Design Kit: Brainstorm Rules

FIDELITY

LOW FIDELITY HIGH FIDELITY

Many details missing. Looks like final product.

\‘ LS . \
START =
I‘I%L‘L SESSION

#1 RULE OF PROTOTYPING

Make prototypes with a well-defined
purpose and scope. Adjust the fidelity
of your prototype to match the

purpose and scope.

SCOPE: WHAT DOES YOUR PROTOTYPE

PROTOTYPE?

RoleROIe

Role: function, fit

Look and feel: appearance,

sensory experience
Integration . :
J Implementation: algorithms,

, engineering, code
Implementation

Look and feel

From Houde and Hill —= What do Prototypes Prototype?

’ »
e S0k B e e
PR P - T S -y e

Role Prototypes

i

5 L S
- - a

r
L."" :". a
. . P . ‘
. . --'t'-"’" -

N

Look-and-Feel Prototypes‘\
-

. Prototypes for the

Microsoft mouse

)
0,
O
=
4
O
4=
O
S
Al
-
O
E=
(O
4=
-
Q
-
Q
O
£

T

R

»

N

4

L S
-

I

» M:*_: *
S,

FEFE A

.
e

'
- . agty -
S YAl

A l.*.. Aer

&g O l?
.u-.J#-’. o » oAv-

ion prototypes for 3D space-

Implementat

planning application [E3

3

Example

Chen 1990].

Implementation Prototypes

—

IntList& IntList::operator=(const IntList& oldList)
{
register long n = oldList.size;

if {n 1= size) setSize(n);

register int« newPir = &values{n];

register int» oldPir = &oldList.values|n];

while (n--) *--newPtr = +--oldPtr;

return «this;

Examplé 12. C++ program sample from a ﬁ;zvi&“dynamics
simulation system [E12: Hill, 1993].

SCOPE: WHAT DOES YOUR PROTOTYPE

PROTOTYPE?
ole
o Why are the types of
prototypes corners of a
Integration triangle? What does this

mean for scoping your
Implementation

prototypes?

Look and feel

From Houde and Hill —= What do Prototypes Prototype?

Prototyping Programming lools
Why prototype?

» Fullimplementations take along
amount of time

» Atleastin research, development
teams are only 1 or 2 people

» Solutions need to merge into
workspaces that are already complex

Role Prototypes

After expanding the code some more, it should let me substitute in realistic input values. These could be captured from the runtime data
of my program. Or maybe they're inferred from typical values an API is called with, mined from open source code online.

try:
input_ = InputStream(selectar)

lexer = CssLexer(input_) C
token_stream = CommonTok C;n
- parser = CssParser(token, “OPY
Narratlve if hasattr(parser, 'sele(Paste
n ri parse_tree = getattr p')()
Scenarios else: Fold / Unfold | _
raise KeyError("Main SUbStitUte Value - " k1l " ’ rUIC_namE)

walker = ParseTreeWalkerq ,,g‘." a‘ffh £1m
walker.walk(explainer, pavee—wrwer / "t;k\;l[Z"— e

Now ['ve still got some try-catch blocks and if-else statements to remove. When | remove these, | want to make sure the code still runs
fine. Others should be able to copy, paste, and run this code, without bugs I've accidentally introduced. So there should be an output

pane like this:

try:
input_ = InputStream("p.klazz")
lexer = CssLexer(input_)
token_stream = CommonTokenStream(lexer)
parser = CssParser(token_stream)
if hasattr(parser, 'selectors_group'):
parse_tree = getattr(parser, 'selectors_group')()
else:

Look-and-Feel Prototypes

. N N explain.py - tutorons-server - [~/Downicads/tutorons-server]
y
tutorons-server tutorons css & CXDIAINDY
l"“;""*' . -:c Q B A xpanpy »
tutorons-server
deps
docs
impore

launch

parsers

tutorons logging.basicConfig(level=logging. INFO, format="\(message)s

common
Css def explain(selector):
A __init__.py explainer = CssCxplainer
detect.py try:
parse_tree = parse plaintextiselector, Cssiexer, CssParser, 'selectors_growp
& examples.py - : . .
‘ walk_treeciparse_tree, explainer)

» explain.py . . : -
» flleext.py - & i
& render.py You might have found something cool. No one online
» 18Qs.pyY

knows about this pattern. Want to share it?
mockups p

ey | think it will take about 10 edits. | start Editing

regex 5\

settings .

sialic

templates

lests

wget _key = Llambde Cix: Cix, invokingState

& __Init__.py

» uris.py def xplain attributelatiribute node)
* VIeEWS.DY

TOUALITY SYMBOLS =
& WSgLpY * sy, . -

Csslexer,. PREFIXMATON,

® .gitignore CssLexer. SUPFIXMATON,

P .gitmodules Csslexer . SUBSTRINGMATON,
A manage.py Csslexer.CQUALS,
4 README md Csslexer. INCLUDCS,

d Csslexer.DASMMATON,
§ rundevserver |

i External Libranes

CQUALITY _SYMBOL_VERES = {
Csslexer. PREFIXMATOM start with
Csslexer SUFFIXMATOM: "end with’,
Csslexer.SUBSTRINGHMATOM contain’,
Csslexer.COQUALS: "equal’,
Csslexer. INCLUDES: "include’,
Csslexer .DASHMMATCH: ‘start with

Implementation Prototypes

Assignment /7 - Program Slicing

Submission details: Please submit a .py file. Submit via GradeScope. If you have questions

on this process, get in touch via the Slack or via email.
Due: 10/19/20

In class, we worked with a program that generates a control flow graph (CFG) for a limited
subset of Python. For this assignment, transform that program into a program slicer.

Required: handle straight-line programs
Strongly encouraged: handle the if then statements we added during class

Extra super awesome: handle loops

Please support this usage:
python program slicing.py filename line number variable name

FORMATIVE USER RESEARCH

Method

Contextual
inquiry

Exploratory lab

studies

Surveys

Data mining
(including
corpus studies
and log
analysis)

Tool development activities supported

Requirements and problem analysis

Requirements and problem analysis

» Requirements and problem analysis
» Evaluation and testing

» Requirements and problem analysis
» Evaluation and testing

Key benefits

» Experimenters gain insight into day-to-

day activities and challenges.
» Experimenters gain high-quality data
on the developer’s intent.

» Focusing on the activity of interest is
easier.

» Experimenters can compare
participants doing the same tasks.

» Experimenters gain data on the
developer's intent.

» Surveys provide quantitative data.
» There are many participants.
» Surveys are (relatively) fast.

» Data mining provides large quantities
of data.

» Experimenters can see patterns that
emerge only with large corpuses.

Natural-
programming
elicitation

Rapid
prototyping

Heuristic
evaluations

Cognitive
walkthroughs

Think-aloud
usability
evaluations

A/B testing

So many methods!

» Requirements and problem analysis
» Design

Design

» Requirements and problem analysis
» Design
» Evaluation and testing

» Design
» Evaluation and testing

» Requirements and problem analysis
» Design
» Evaluation and testing

Evaluation and testing

Experimenters gain insight into
developer expectations.

Experimenters can gather feedback at
low cost before committing to high-cost

development.

» Evaluations are fast.
» They do not require participants.

» Walkthroughs are fast.
» They do not require participants.

Evaluations reveal usability problems and
the developer's intent.

» Testing provides direct evidence
that a new tool or technique benefits
developers.

» It provides objective numbers.

Myers, Ko, Laloza, and Yoon "Programmers Are Users 100: Human-
Centered Methods for Improving Programming Tools." Computer.

When to use a design method

| need to understand | need to evaluate
the problem the solution

actionable
design insight

fast to plan fast to plan
and run and run

When to use a design method

| need to understand | need to evaluate
the problem the solution

actionable
design insight

fast to plan and fast to plan
run and run

When to use a design method

| need to understand | need to evaluate
the problem the solution

actionable
design insight
surveys
content
analyses

fast to plan fast to plan
and run and run

actionable
design insight

When to use a design method

| need to understand | need to evaluate
the problem the solution

Interviews

surveys

content
analyses

fast to plan fast to plan
and run and run

actionable
design insight

When to use a design method

| need to understand | need to evaluate
the problem the solution

observations with
existing tools

Interviews

surveys

content
analyses

fast to plan fast to plan
and run and run

actionable
design insight

When to use a design method

| need to understand | need to evaluate
the problem the solution

observations with
existing tools

Interviews

surveys

content
analyses experiments

fast to plan fast to plan
and run and run

actionable
design insight

When to use a design method

| need to understand | need to evaluate
the problem the solution

observations with
existing tools

interviews observations with
your tool
surveys
content
analyses experiments

fast to plan fast to plan
and run and run

actionable
design insight

When to use a design method

| need to understand | need to evaluate
the problem the solution

design critique
prototyping

observations with
existing tools

iInterviews observations with
your tool
surveys
content .
experiments
analyses
£2ct 0 Dl fast to plan
asttoplan and run

and run

actionable
design insight

When to use a design method

| need to understand | need to evaluate
the problem the solution

observations with design critique

existing tools prototyping

iInterviews observations with
your tool
surveys
content .
experiments
analyses
£2ct 0 Dl fast to plan
asttoplan and run

and run

Understanding Problems in a Time Crunch: Observations

Answers the questions,
(1) "Did | pick an actual problem?"

(2) "What issues can a tool help fix?"

designed
thing

user

designed
thing

facilitator user

greets user, gives tutorial,

asks and answers questions

designed

thing

&0 oo

facilitator user

observer

takes focused, complete notes

Yoda

(your user/participant)

- /
-

Highly recommend the expert-apprentice relationship model for

contextual inquiry.

Don’t typically recommend offering piggyback rides as part of it.

- y R N

FORMATIVE STUDY

We conducted a formative study to understand the process that
programmers follow when creating executable code examples
from their own code, and the obstacles they encounter along
the way. We observed 12 programmers as they created exam-
ple code. Participants were recruited from our professional
networks, local MeetUps, and computer science researchers
from a local university.

This study and a review of literature on code examples led to
design recommendations for improving the user experience of
extracting code examples from existing code (Figure 2). We
refer the reader to Section Al of the auxiliary material for
protocol details and observations from the formative study.

Authors made examples by...

Copying the original code and
pasting into example editor

Tools should help authors...

Create examples from text
selections

Add lines from original code at
any time

Replacing variables with
meaningful literal values

Review and insert literal values
that preserve program behavior

Tweaking comments and code
format for readability

Making examples could be
time-consuming because...

Directly edit code to add

comments, group lines, and add
print statements

Better tools could...

Authors left out code

Suggest lines of code that the
current example needs to run
Add missing code automatically
when it's the only sensible fix

Authors introduced errors via
transcription or edits

Constrain manual code edits
Enable early and frequent testing

It took time to remove
irrelevant code

Start from a blank file
Omit code except for explicit code
selections and necessary fixes

FORMATIVE STUDY

We conducted a formative study to understand the process that
programmers follow when creating executable code examples
from their own code, and the obstacles they encounter along
the way. We observed 12 programmers as they created exam-
ple code. Participants were recruited from our professional
networks, local MeetUps, and computer science researchers
from a local university.

This study and a review of literature on code examples led to
design recommendations for improving the user experience of
extracting code examples from existing code (Figure 2). We
refer the reader to Section Al of the auxiliary material for
protocol details and observations from the formative study.

Authors made examples by...

Copying the original code and
pasting into example editor

Tools should help authors...

Create examples from text
selections

Add lines from original code at
any time

Replacing variables with
meaningful literal values

Review and insert literal values
that preserve program behavior

Tweaking comments and code
format for readability

Making examples could be
time-consuming because...

Directly edit code to add
comments, group lines, and add
print statements

Better tools could...

Authors left out code

Suggest lines of code that the
current example needs to run
Add missing code automatically
when it's the only sensible fix

Authors introduced errors via
transcription or edits

Constrain manual code edits
Enable early and frequent testing

It took time to remove
irrelevant code

Start from a blank file
Omit code except for explicit code
selections and necessary fixes

Untitled.py — *

p—— ———————— 8 mm—————————

n 3 (> J(m) | /]

Language Run Stop Kun Settings...

Untitled. py

viaws v

-_—_— —_— —_— -_—— —_—
"

......

Example Editor |~

unttiea.py —

n3
Language

Untitle

viaws v

Untitled.py — ¢
n3

Language

Source Program

Unltitle

viaws v

3
Language

Untitle

Testing Environment

Browser

Untitled.py —
n3

Language

Untitle

viaws v

Untitled.py — *

p—— ———————— 8 mm—————————

n 3 (> J(m) | /]

Language Run Stop Kun Settings...

Untitled. py

viaws v

Untitled.py — *

n3
Language

Unltitle

viaws v

S————————— ———— ———— ————_ ——
..........

ranscription errors

Untitled.py — *

n3
Language

Unltitle

viaws v

I e Rl ¥ e e e———
= .
)

@ | @ |

-

-
-
— . ——

ranscription errors
Forgotten code

Untitled.py — _
n3
Language
Untitied. py

viaws v

—_— _ —_—_— ——————————————————————
......... —————

ranscription errors e
Forgotten code

Untitled.py — =

n 3 S » ™)

Language Run 5top

Untitled. py

viaws v

...and time-consuming removal of dead code

ANDREW'S MAXIMUM-FUN,
MINIMUM-REGRET OBSERVATION TIPS

1. Keep It focused

1. Make your research questions before the study.

'terate. Keep the good ones.

2. Help users understand what feedback is

actionable to you—and what's not

a. Set the parameters of the conversation early

b Provide on-aoina auidance

ANDREW'S MAXIMUM-FUN,
MINIMUM-REGRET OBSERVATION TIPS

2. Plan your notes for tast analysis

1. Take notes and record the conversation
2. Structure your notes document to make

analysis easy and fast

3. Start synthesizing right after the study

Benefits and Challenges of Mixed-Initiative TARG ETED N OTE S

When Guide Rails Are Helpful

Directing Focus to What Work Still Had to

A section for each

e Participants generally reported that it was helpful t

and get suggestions of definitions to include (e.g., re Se a rch q u e Sti O n

e “[the features this participant marked as most impc

task of making an example that worked rather than (m a ke befO re Stu dy)

of which variables | needed to declare, etc.” (NO7)

Making Quick Work of Otherwise Tedious Trial and Error

e The value of small, automatic fixes - | nte rp retati on

o “although not necessarily hard to do, [all of the other featu

/ example a lot easier because | just had to look at the rele) (a d d 1IN rea ‘ tm e)

needed it or not instead of having to manually add them ir.—vwo=y

evidence

(quotes,

b : o “Itfills in a lot of things that people usually don’t really think about (exceptions,
O serva’uons, variables/constants) and saves a lot of time spent just searching and

add in real time) copy/pasting.” (N04)

aved me the trouble of having to go through and find things like
eclared variables, missing import statements, and unchecked exceptions,

which prevented my Sierra code from compiling.” (NO5)

u Se r I DS e Some of the many small fixes CodeScoop made automatically, but that participants had

to do manually in the baseline

ANDREW'S MAXIMUM-FUN,
MINIMUM-REGRET OBSERVATION TIPS
3. Develop rapport with users

1. There's always time tor a bit of small talk

a. Make them feel comfortable
b. Make them feel appreciated (they're

doing you a huge favorl)

c. Make them want to help again

Understanding Solutions in a Time Crunch: Critiques

Answers the questions,

(1) "Does this solve the problem?"

(2)"Is this something that users (and

my peers) will get excited about?

Weryed #1.2.3

WEATHER REPORT
MAN

PLEASE CLEAN W
AFTER

3
‘,.”"»o.,.r——(::.«;. ?kzyaﬁe bttt et tnd
#
;—.".r,”"—q)]‘ d M.“'UMH“S
Horasicnmicosnsat. PRSP
- :
=, ™~ |
Yl /) 777
T/ Ne
Vi ‘
7 |
7 » &
» 2
e .
G O E5D
— -
tase o= e S|
e &Y f
j i
= -
[« P —
C S el D LEXTAE ME
- . Saw Ratge
- o .
X 40% N\ Ag%
t =
e A, -
‘ Vel dover
L) £ -
,./ o3 g, =
o 0000
&
vt A
itk %

‘..,uL,\&&.--ﬁ
)
June 2% 205

A STorm CHASER
PR2yECT L

STEURC INFS oF
wHAT uSER mGHT
WANT T oy ABoLT

THE SToR M / AT sm;‘:_"m

\}

&

o

NpTRIS

AN

own b
bodeymend, 2t T

Getting Feedback on Programming
Tools Before They're Built

Get feedback from multiple users

Get feedback from multiple tool builders
Present multiple ideas, not just one

Come up with concrete worked examples
Be open to new ideas

1. Get Feedback from Multiple Users

Programmers have diverse work styles and preferences. Here's
one way of looking at differences in work styles.

» "Opportunistic programmers are more concerned with
productivity than control or understanding.’

» "Pragmatic programmers balance productivity with control
and understanding.’

» "Systematic programmers program defensively and these are
the programmers for whom low-level APIs are targeted”

From Clarke, "Measuring API Usability", Dr. Dobb's

Elaborated on in Stylos and Clarke, "Usability Implications of Requiring
Parameters in Objects’ Constructors”, ICSE'07

1. Get Feedback from Multiple Users

Abby Pat

Support ALL TYPES of users and their Cognitive Styles’

Motivations

People have different motivations for using technology:

» Abby uses technology only as needed for his/her task. S/he prefers familiar
features to keep focused on the task.

» Tim likes using technology to learn what new features can help him/her accomplish.
» Pat is like Abby in some situations and like Tim in others.

Make clear what a new feature does, and why someone would use it, but also
keep familiar features available.

GenderMag personas, gendermag.org

2. Get Feedback from Tool Builders

"When artists assessed one another's performances, they
were about twice as accurate as managers and test audiences
In predicting how often the videos would be shared.
Compared to creators, managers and test audiences were 56
percent and 55 percent more prone to major false negatives,
undervaluing a strong, novel performance by five ranks or
more in the set of ten they viewed.”

From Adam Grant, Onginals, regarding Justin Berg's publication , "Balancing on the
Creative Highwire: Forecasting the Success of Novel Ideas in Organizations”

3. Present Multiple Ideas, Not Just One

 Critics are more willing to give
substantive feedback when there are
several ideas In play

» Designs that evolve from parallel
prototypes (rather than sequential
prototypes)

Getting the Right Design and the Design Right:
Testing Many Is Better Than One

Maryam Tohidi William Buxton Ronald Baecker Abigail Sellen
University of Toronto Microsoft Research University of Toronto Microsoft Research
Toronto, Canada Toronto, Canada Toronto, Canada Cambridge, UK

mtohidi@dgp.toronto.edu bill@billbuxton.com rmb@kmdi.utoronto.ca asellen@microsoft.com

ABSTRACT

We present a study comparing usability testing of a single
interface versus three functionally equivalent but
stylistically distinct designs. We found that when presented
with a single design, users give significantly higher ratings
and were more reluctant to criticize than when presented
with the same design in a group of three. Our results imply
that by presenting users with alternative design solutions,
subjective ratings are less prone to inflation and give rise to
more and stronger criticisms when appropriate. Contrary to
our expectations, our results also suggest that usability
testing by itself, even when multiple designs are presented,
is not an effective vehicle for soliciting constructive
suggestions about how to improve the design from end
users. It 1s a means to identify problems, not provide
solutions.

1 Summer Wezkaays

(Gan ot . 2005)

Figure 1. The “Circular” paper prototype
Frogram _ | Summec on Vacation 3 b

oyram [Sume ;

o b s 1 a2 tuwe
Morning S5 To) T
Day (oo Iyl &7 v & 1]
Evening (500 Jv] [z M [15 I¥l
Ni%h'f Liz:@ %] 760 19 |) |2
Date Tive mperguey

EEHEUEEg [ER[PH =R [ZH

Figure 2. The “Tabular” paper prototype

Parallel Prototyping Leads to Better
Design Results, More Divergence,
and Increased Self-Efficacy

STEVEN P. DOW, ALANA GLASSCO, JONATHAN KASS, MELISSA SCHWAR/Z,
DANIEL L. SCHWARTZ, and SCOTT R. KLEMMER

Stanford University

Iteration can help people improve ideas. It can also give rise to fixation, continuously refining one
option without considering others. Does creating and receiving feedback on multiple prototypes
in parallel, as opposed to serially, affect learning, self-efficacy, and design exploration? An experi-
ment manipulated whether independent novice designers created graphic Web advertisements in
parallel or in series. Serial participants received descriptive critique directly after each prototype.
Parallel participants created multiple prototypes before receiving feedback. As measured by click-
through data and expert ratings, ads created in the Parallel condition significantly outperformed
those from the Serial condition. Moreover, independent raters found Parallel prototypes to be more

diverse. Parallel participants also reported a larger increase in task-specific self-confidence. This
article outlines a theoretical foundation for why parallel prototyping produces better design results

and discusses the implications for design education.

Categories and Subject Descriptors: H.1.m. [Information Systems]: Models and Principles

General Terms: Experimentation, Design

Fig. 1. The experiment manipulates when participants receive feedback during a design process:
in serial after each design (top) versus in parallel on three, then two (bottom).

4. Come up with concrete worked examples

Implementation

AlIntegration

RochOIe

Look and feel

Worked examples, or
scenarios of tool usage
showing real programs.

These let you
simultaneously to start
testing the functionality
and fit of your idea while
thinking about
Implementation feasibility.

WIZARD OF OZ STUDY
puter / "wizard" updates
‘Iprototype IN response to

Jseractions

observer

prototyped thing |

!
J U
-~ Y)
~n AT

facilitator user

Why is it called
"Wizard-of-Oz"?

Why is it called
"Wizard-ot-Oz"?

A Discount ldea Evaluation Method

« Make adeck of slides

» Create ademo walkthrough of your 3 most
exciting tool iIdeas

* [heyshow real programs, real text

* They come with aproblem description, solution
description, and resolution

» Showthis to 3 users, 3 tool builders. Ask
qguestions that help you figure out if they've
actually understood the tool and what they d
have to do to use it.

public class ControlFlowTest extends LightCodeInsightTestCase 3 Chop
{ @NonNls]
private static final String BASE_PATH = "testData/psi/controlFlow";
private static void doTestFor(final File file) throws Exception {

String contents = StringUtil.convertLineSeparators(FileUtil.loadFile(file));
configureFromFileText(file.getName(), contents);

// extract factory policy class name

Pattern pattern = Pattern.compile("?/ (\\S*).*", Pattern.DOTALL); Matcher
matcher = pattern.matcher(contents); assertTrue(matcher.matches());
final String policyClassName = matcher.group(l);
final ControlFlowPolicy policy;
if ("LocalsOrMyinstanceFieldsControlFlowPolicy".equals(policyClassName)) { policy =
el Loc{alsOrMyInstanceFieldsControlFlowPolicy.getInstance();
else

policy = null;
¥

final int offset = getkditor().getCaretModel () .getOffset(Q);
PsiElement element = getFile().findElementAt(offset);
element = PsiTreeUtil.getParentOfType(element, PsiCodeBlock.class, false);

assertTrue("Selected element: " + element, element instanceof PsiCodeBlock);

ControlFlow controlFlow = ControlFlowFactory.getInstance(getProject()).getControlFlow(element, policy); String result
= controlFlow.toString().trimQ);

final String expectedFullPath = StringUtil.trimEnd(file.getPath(), ".java™) + ".txt"™; VirtualFile
expectedFile = LocalFileSystem.getInstance().findFileByPath(expectedFullPath); String expected =

LoadTextUt11.loadText(expectedFile).toString().trimQ;
expected = expected.replaceALL("Vv", ");
assertEquals("Text mismatch (in file " + expectedFullPath + "):\n", expected, result);

¥

// Not sure why this is failing on some simple tests (like flow3). It looks like the branching, reading, and
// writing structure 1s correctly captured. So maybe we should just update the test output.
private static void doAllTests() throws Exception {

final String testDirPath = BASE_PATH; File

testDir = new File(testDirPath); . .
final File[] files = testDir.listFiles((dir, name) -> name.endsWith(".java™));

for (int 1 = 0; 1 < files.length; 1++) { File
file = files[1]; doTestFor(file);

System.out.print((1 + 1) + " ");
h

public class ControlFlowTest extends LightCodeInsightTestCase 3 Chop
{ @NonNls]
private static final String BASE_PATH = "testData/psi/controlFlow";
private static void doTestFor(final File file) throws Exception {

String contents = StringUtil.convertLineSeparators(FileUtil.loadFile(file));
configureFromFileText(file.getName(), contents);

// extract factory policy class name

Pattern pattern = Pattern.compile("?/ (\\S*).*", Pattern.DOTALL); Matcher
matcher = pattern.matcher(contents); assertTrue(matcher.matches());
final String policyClassName = matcher.group(l);
final ControlFlowPolicy policy;
if ("LocalsOrMyinstanceFieldsControlFlowPolicy".equals(policyClassName)) { policy =
el Loc{alsOrMyInstanceFieldsControlFlowPolicy.getInstance();
else

policy = null;
¥

final int offset = getkditor().getCaretModel () .getOffset(Q);

PsiElement element = getFile().findElementAt(offset);
element = PsiTreeUtil.getParentOfType(element, PsiCodeBlock.class, false);

assertTrue("Selected element: " + element, element instanceof PsiCodeBlock);

ControlFlow | controlFlow [= ControlFlowFactory.getInstance(getProject()).getControlFlon(element, policy);
String result = controlFlow.toString(Q).trimQ;

final String expectedFullPath = StringUtil.trimEnd(file.getPath(), ".java™) + ".txt"™; VirtualFile
expectedFile = LocalFileSystem.getInstance().findFileByPath(expectedFullPath); String expected =

LoadTextUt11.loadText(expectedFile).toString().trimQ;
expected = expected.replaceALL("Vv", "");
assertbEquals("Text mismatch (in file " + expectedFullPath + "):\n", expected, result);

¥

// Not sure why this is failing on some simple tests (like flow3). It looks like the branching, reading, and
// writing structure 1s correctly captured. So maybe we should just update the test output.
private static void doAllTests() throws Exception {

final String testDirPath = BASE_PATH; File

testDir = new File(testDirPath); . _
final File[] files = testDir.listFiles((dir, nane) -> name.endsWith(".java™));

for (int 1 = 0; 1 < files.length; 1++) { File
file = files[1]; doTestFor(file);

System.out.print((1 + 1) + " ");
¥

public class ControlFlowTest extends LightCodeInsightTestCase
{ @NonNls
private static final String BASE_PATH = "testData/psi/controlFlow" ;

private static void doTestFor(final File file) throws Exception {

¥

// Not sure why this is failing on some simple tests (like flow3).
// writing structure 1s correctly captured. So maybe we should just update the test output.

String contents = StringUtil.convertlLineSeparators(FileUtil.loadFile(file));
configureFromFileText(file.getNane(), contents);

// extract factory policy class name

Pattern pattern = Pattern.compile("?/ (\\S*).*", Pattern.DOTALL); Matcher

matcher = pattern.matcher(contents); assertTrue(matcher. matches()),
final String policyClassName = matcher.group(l);
final ControlFlowPolicy policy;

if (“LocalsOrMyinstanceFieldsControlFlowPolicy”.equals(policyClassName)) {

, pol;cy = LocalsOrMyInstanceFieldsControlFlowPolicy.getInstance(Q);
else

policy = null;
¥

final int offset = getEditor().getCaretModel () .getOffset(Q);

PsiElement element = etFlleCQ ﬁndElementAt(ostod)
element = PsiTreeltil.getParentOfType(element, PsiCodeBlock.class, false);

assertTrue("Selected element: " + element, element instanceof P51CodeBlock),

SOTHEP Helc

final String expectedFullPath = StringUtil.trimEnd(file.getPath(), ".java™) + ".txt";

3. Chop

W tggenb- Esllé},%@,ctor'y getInstance(getProject()).getControlFlow(element, policy);

VirtualFile

expectedFile = LocalFileSystem.getInstance(). ﬁndFlleByPath(expectedFullPath) ; Strlng expected =

LoadTextUt11. loadText(expectedFile).toStringQ).trimQ;
expected = expected. r'eplaceAll("\r" ";

assertbEquals("Text mismatch (in file " + expectedFullPath + "):\n", expected, result);

private static void doAllTests() throws Exception {

final String testDirPath = BASE_PATH; File
testDir = new File(testDirPath);

final F11e|:| files = testDir. hstFlles((dlr nane) -> name.endsWith("java™));

for (int 1 = 0; 1 < files.length; 1+) { File
file = files [1]; doTestFor'(ﬁle);

System.out.print((1 + 1) + " ");
}

It looks like the branching, reading, and

public class ControlFlowTest extends LightCodeInsightTestCase
{ @NonNls
private static final String BASE_PATH = "testData/psi/controlFlow" ;

private static void doTestFor(final File file) throws Exception {

¥

// Not sure why this is failing on some simple tests (like flow3).
// writing structure 1s correctly captured. So maybe we should just update the test output.

String contents = StringUtil.convertLineSeparators(FileUtil.loadFile(file));
configureFromFileText(file.getName(), contents);

// extract factory policy class name

Pattern pattern = Pattern.compile("?/ (\\S*).*", Pattern.DOTALL); Matcher

matcher = pattern.matcher(contents); assertTrue(matcher. matches()),

final String policyClassName = matcher.group(l);

final ControlFlowPolicy policy;

if ("LocalsOrMyinstanceFieldsControlFlowPolicy”.equals(policyClassName)) { policy =
Local sOrMyInstanceFieldsControlFlowPolicy.getInstance(Q);

t el
ull;
ks

final int offset = getEditor().getCaretModel () .getOffset(Q);

PsiElement element = etFlleCQ ﬁndElementAt(oFFsod)
element = PsiTreeltil.getParentOfType(element, PsiCodeBlock.class, false);

assertTrue("Selected element: " + element, element instanceof P51CodeBlock),

SOTHEP Helc

final String expectedFullPath = StringUtil.trimEnd(file.getPath(), ".java™) + ".txt";

3. Chop

W 4 tggenb- Esllé}%qgg,ctor'y getInstance(getProject()).getControlFlow(element, policy);

VirtualFile

expectedFile = LocalFileSystem.getInstance(). ﬁndFlleByPath(expectedFullPath) ; Strlng expected =

LoadTextUt11. loadText(expectedFile).toStringQ).trimQ;
expected = expected. r'eplaceAll("\r" ");
assertbEquals("Text mismatch (in file " + expectedFullPath + "):\n", expected, result);

private static void doAllTests() throws Exception {

final String testDirPath = BASE_PATH; File

testDir = new File(testDirPath);
final File[] files = testDir. hstFlles((dlr nane) -> name.endsWith("java™));

for (int 1 = 0; 1 < files.length; 1+) { File
file = files [1]; doTestFor'(ﬁle);

System.out.print((1 + 1) + " ");
}

It looks like the branching, reading, and

public class ControlFlowTest extends LightCodeInsightTestCase
{ @NonNls
private static final String BASE_PATH = "testData/psi/controlFlow" ;

private static void doTestFor(final File file) throws Exception {

¥

// Not sure why this is failing on some simple tests (like flow3).
// writing structure 1s correctly captured. So maybe we should just update the test output.

String contents = StringUtil.convertlLineSeparators(FileUtil.loadFile(file));
configureFromFileText(file.getNane(), contents);

// extract factory policy class name

Pattern pattern = Pattern.compile("?/ (\\S*).*", Pattern.DOTALL); Matcher

matcher = pattern.matcher(contents); assertTrue(matcher. matches()),

final String policyClassName = matcher.group(l);

final ControlFlowPolicy policy;

if ("LocalsOrMyinstanceFieldsControlFlowPolicy".equals(policyClassName)) { policy =
Local sOrMyInstanceFieldsControlFlowPolicy.getInstance(Q);

} el
Iy

ull;

final int offset = getEditor().getCaretModel () .getOffset(Q);

PsiElement element = etFlleCQ ﬁndElementAt(ostod)
element = PsiTreeltil.getParentOfType(element, PsiCodeBlock.class, false);

assertTrue("Selected element: " + element, element instanceof P51CodeBlock),

SOTHEP Helc

final String expectedFullPath = StringUtil.trimEnd(file.getPath(), ".java™) + ".txt";

3. Chop

M T tﬁ% Esllé},%@,ctor'y getInstance(getProject()).getControlFlow(element, policy);

VirtualFile

expectedFile = LocalFileSystem.getInstance(). ﬁndFlleByPath(expectedFullPath) ; Strlng expected =

LoadTextUt11. loadText(expectedFile).toStringQ).trimQ;
expected = expected. replaceAll("\r" ");
assertbEquals("Text mismatch (in file " + expectedFullPath + "):\n", expected, result);

private static void doAllTests() throws Exception {

final String testDirPath = BASE_PATH; File

testDir = new File(testDirPath);
final File[] files = testDir. hstFlles((dlr nane) -> name.endsWith("java™));

for (int 1 = 0; 1 < files.length; 1+) { File
file = files [1]; doTestFor'(ﬁle);

System.out.print((1 + 1) + " ");
}

It looks like the branching, reading, and

public class ControlFlowTest extends LightCodeInsightTestCase 3 Chop
{ @NonNls]
private static final String BASE_PATH = "testData/psi/controlFlow";
private static void doTestFor(final File file) throws Exception {

String contents = StringUtil.convertLineSeparators(FileUtil.loadFile(file));
configureFromFileText(file.getName(), contents);

// extract factory policy class name

Pattern pattern = Pattern.compile("?/ (\\S*).*", Pattern.DOTALL); Matcher

matcher = pattern.matcher(contents); assertTrue(matcher.matches());

final String policyClassName = matcher.group(l);

final ControlFlowPolicy policy;

if ("LocalsOrMyinstanceFieldsControlFlowPolicy".equals(policyClassName)) { policy =
Local sOrMyInstanceFieldsControlFlowPolicy.getInstance(Q);

B hn;

}

final int offset = getkditor().getCaretModel () .getOffset(Q);
PsiElement element = getFile().findElementAt(offset);

= PsiTreeUtil.getParentOf Type(element, PsiCodeBlock.class, false);
ue("Selected element: " + element, element instanceof PsiCodeBlock);

Control controlFlow = ControlFlowFactory.getInstance(getProject()).getControlFlown(element, policy);
String result = controlFlow.toString(Q).trimQ;

final String expectedFullPath = StringUtil.trimEnd(file.getPath(), ".java™) + ".txt"™; VirtualFile
expectedFile = LocalFileSystem.getInstance().findFileByPath(expectedFullPath); String expected =

LoadTextUt11.loadText(expectedFile).toString().trimQ;
expected = expected.replaceALL("Vv", "");
assertbEquals("Text mismatch (in file " + expectedFullPath + "):\n", expected, result);

¥

// Not sure why this is failing on some simple tests (like flow3). It looks like the branching, reading, and
// writing structure 1s correctly captured. So maybe we should just update the test output.
private static void doAllTests() throws Exception {

final String testDirPath = BASE_PATH; File

testDir = new File(testDirPath); . _
final File[] files = testDir.listFiles((dir, nane) -> name.endsWith(".java™));

for (int 1 = 0; 1 < files.length; 1++) { File
file = files[1]; doTestFor(file);

System.out.print((1 + 1) + " ");
¥

public class ControlFlowTest extends LightCodeInsightTestCase 3 Chop
{ @NonNls]
private static final String BASE_PATH = "testData/psi/controlFlow";
private static void doTestFor(final File file) throws Exception {

String contents = StringUtil.convertLineSeparators(FileUtil.loadFile(file));
configureFromFileText(file.getName(), contents);

// extract factory policy class name

Pattern pattern = Pattern.compile("?/ (\\S*).*", Pattern.DOTALL); Matcher

matcher = pattern.matcher(contents); assertTrue(matcher.matches());

final String policyClassName = matcher.group(l);

final ControlFlowPolicy policy;

if ("LocalsOrMyinstanceFieldsControlFlowPolicy".equals(policyClassName)) { policy =
Local sOrMyInstanceFieldsControlFlowPolicy.getInstance(Q);

B hn;

}

final int offset = getkditor().getCaretModel () .getOffset(Q);
PsiElement element = getFile().findElementAt(offset);

= PsiTreeUtil.getParentOf Type(element, PsiCodeBlock.class, false);
ue("Selected element: " + element, element instanceof PsiCodeBlock);

Control controlFlow = ControlFlowFactory.getInstance(getProject()).getControlFlown(element, policy);
String result = controlFlow.toString(Q).trimQ;

final String expectedFullPath = StringUtil.trimEnd(file.getPath(), ".java™) + ".txt"™; VirtualFile
expectedFile = LocalFileSystem.getInstance().findFileByPath(expectedFullPath); String expected =

LoadTextUt11.loadText(expectedFile).toString().trimQ;
expected = expected.replaceALL("Vv", "");
assertbEquals("Text mismatch (in file " + expectedFullPath + "):\n", expected, result);

¥

// Not sure why this is failing on some simple tests (like flow3). It looks like the branching, reading, and
// writing structure 1s correctly captured. So maybe we should just update the test output.
private static void doAllTests() throws Exception {

final String testDirPath = BASE_PATH; File

testDir = new File(testDirPath); . _
final File[] files = testDir.listFiles((dir, nane) -> name.endsWith(".java™));

for (int 1 = 0; 1 < files.length; 1++) { File
file = files[1]; doTestFor(file);

System.out.print((1 + 1) + " ");
¥

public class ControlFlowTest extends LightCodeInsightTestCase
{ @NonNls
private static final String BASE_PATH = "testData/psi/controlFlow" ;

private static void doTestFor(final File file) throws Exception {
String contents = StringUtil.convertlLineSeparators(FileUtil.loadFile(file));
configureFromFileText(file.getNane(), contents);

// extract factory policy class name

Pattern pattern = Pattern.compile("?/ (\\S*).*", Pattern.DOTALL); Matcher
matcher = pattern.matcher(contents); assertTrue(matcher.matches());

¥

final String

policyClassName = matcher.group(l);

final ControlFlowPolicy policy;
if ("LocalsOrMyinstanceFieldsControlFlowPolicy".equals(policyClassName)) { policy =
Local sOrMyInstanceFieldsControlFlowPolicy.getInstance(Q);

B hn;

}

final int offset = getkditor().getCaretModel () .getOffset(Q);
PsiElement element = getFile().findElementAt(offset);

element | _

oSSeT L‘.*
ControlF

String r =

final St

VirtualFS
L{

expected |

String e

assertEq Y

Show input data for element:

U type: CodeBlock

U text: "{i=1;if (==1) return true; }"
O textOffset: 52

U firstChild: PsiElement —

3. Chop

, false);
eof PsiCodeBlock);

etProject()).getControlFlon(element, policy);

tPath(Q), "java"™) + ".txt";
"indFileByPath(expectedFul lPath) ;

ring(Q).trimQ);

+ "):\n", expected, result);

// Not sure why this 1s failing on some simple tests (like flow3). It looks like the branching, reading, and
// writing structure 1s correctly captured. So maybe we should just update the test output.

private static void doAllTests() throws Exception {
final String testDirPath = BASE_PATH; File

testDir = new File(testDirPath); . .
final File[] files = testDir.listFiles((dir, nane) -> name.endsWith(".java™));

for (int 1 = 0; 1 < files.length; 1++) { File
file = files[1]; doTestFor(file);

System.out.print((i + 1) + " ");

}

{ @NonNls

public class ControlFlowTest extends LightCodeInsightTestCase

private static final String BASE_PATH = "testData/psi/controlFlow";

private static void doTestFor(final File file) throws Exception {
String contents = StringUtil.convertlLineSeparators(FileUtil.loadFile(file));
configureFromFileText(file.getNane(), contents);
// extract factory policy class name
Pattern pattern = Pattern.compile("?/ (\\S*).*", Pattern.DOTALL); Matcher

matcher = pattern.matcher(contents); assertTrue(matcher.matches());
final String policyClassName = matcher.group(l);
final ControlFlowPolicy policy;

¥

3. Chop

if ("LocalsOrMyinstanceFieldsControlFlowPolicy".equals(policyClassName)) { policy =
Local sOrMyInstanceFieldsControlFlowPolicy.getInstance(Q);

T

}

final int offset = getkditor().getCaretModel () .getOffset(Q);

PsiElement element = getFile().findElementAt(offset);

element | _

LT
uoocr L Y

ControlFl
String r =

final St©
VirtualFH
String e
expected |
%%ﬁmu

L{

Show input data for element:

A type: CodeBlock
ext: "{i=1;if (== 1) return true; }"

[textOffset: 52
O firstChild: PsiElement —

, false);
eof PsiCodeBlock);

etProject()).getControlFlon(element, policy);

tPath(Q), "java"™) + ".txt";
"indFileByPath(expectedFul lPath) ;

ring(Q).trimQ);

+ "):\n", expected, result);

// Not sure why this 1s failing on some simple tests (like flow3). It looks like the branching, reading, and
// writing structure 1s correctly captured. So maybe we should just update the test output.

private static void doAllTests() throws Exception {
final String testDirPath = BASE_PATH; File

testDir = new File(testDirPath); . .
final File[] files = testDir.listFiles((dir, nane) -> name.endsWith(".java™));

for (int 1 = 0; 1 < files.length; 1++) { File
file = files[1]; doTestFor(file);

System.out.print((1 + D + " ");

}

public class ControlFlowTest extends LightCodeInsightTestCase
{ @NonNls

private static final String BASE_PATH =

"testData/psi/controlFlow";

private static void doTestFor(final File file) throws Exception {
String contents = StringUtil.convertlLineSeparators(FileUtil.loadFile(file));
configureFromFileText(file.getNane(), contents);

¥

// Not sure why this is failing on some simple tests (like flow3).

// extract factory policy class name

Pattern pattern = Pattern.compile("?/ (\\S*).*", Pattern.DOTALL); Matcher

matcher = pattern.matcher(contents); assertTrue(matcher. matches()),

final String policyC
final ControlFlowPolicy policy;

lassName = matcher.group(1);

3. Chop

if ("LocalsOrMyinstanceFieldsControlFlowPolicy".equals(policyClassName)) { policy =

LocalsOrMy

policy = null;

final int offset = getkditor().getCaretModel () .getOffset(Q);

InstanceFieldsControlFlowPolicy.getInstanceQ);

type: CodeBlock
text:

“i=1;if (i == 1) return true; }"

P<iFlement element = getFile().findElementAt(offset);
element | = PsiTreeUtil.getParentOfType(element, PsiCodeBlock.class false);
assercriue("Selected element: " + element, element instanceof PsiCodeBlock);

— L P L Vs LIS PR <. U N

3~

ControlFlow ontrolFlow

final String expectedFullPath =
VirtualFile expectedFlle =
String expected = LoadTextUtil.
expected = expected.replaceAll("
assertEquals("Text mismatch (in

rolFl
Str'lng result= LUIILIULKO'E&

Loca1

toString():
0: ReadVariable |
1: ConditionalGoTo [END] 2

trolFlow(element, policy) :

'java") + ".txt";
Path(expectedFul 1Path);
tmQ);

expected, result);

It looks like the branching, reading, and

// writing structure is correctly captured. So maybe we should just update the test output.
private static void doAllTests() throws Exception {

final String testDirPath = BASE_PATH;

testDir = new File(testDirPath);

File

final F11e|:| files = testDir. hstFlles((dlr' nane) -> name.endsWith(".java™));
for (int 1 = 0; 1 < files.length; 1++) { File
file = ﬁles[i]; doTestFor(ﬁle);

System.out.print((1 + 1) + " ");
¥

public class ControlFlowTest extends LightCodeInsightTestCase
{ @NonNls
private static final String BASE_PATH = "testData/psi/controlFlow" ;

private static void doTestFor(final File file) throws Exception {

String contents = StringUtil.convertLineSeparators(FileUtil.loadFile(file));
configureFromFileText(file.getName(), contents);

¥

// extract factory policy class name

Pattern pattern = Pattern.compile("?/ (\\S*).*", Pattern.DOTALL); Matcher

matcher = pattern.matcher(contents); assertTrue(matcher.matches());
final String policyClassName = matcher.group(l);

final ControlFlowPolicy policy;

InstanceFieldsControlFlowPolicy.getInstanceQ);

} else
policy = null;

final int offset = getkditor().getCaretModel () .getOffset(Q);

3. Chop
Make example

if yInstanceFieIdsControIFIowPoIicy".equals(policyClassName)) { policy =
LocalsC

type: CodeBlock
text: "{i=1;if (i == 1) return true; }"

P<iFlement element = getFile().findElementAt(offset);

element = PsiTreeUtil.getParentOfType(element, PsiCodeBlock.class, false);

assertiiue("Selected element: " + element, element instanceof PsiCodeBlock);

— P Vs LIS PR <. U N

3~

ControlFlow ontrolFlow = (ortrolFl
Str'ing resul .t ="Corcrotr tow. to t

final String expectedFullPath =
VirtualFile expectedFile =

String expected = LoadTextUtil.
expected = expected.replaceAll("

assertEquals("Text mismatch (in

Loca}

toString():
0: ReadVariable |
1: ConditionalGoTo [END] 2

trolFlow(element, policy) "

'java") + ".txt";
Path(expectedFul 1Path);
tmQ);

expected, result);

// Not sure why this is failing on some simple tests (like flow3). It looks like the branching, reading, and

// writing structure is correctly captured. So maybe we should just update the test output.
private static void doAllTests() throws Exception {

final String testDirPath = BASE_PATH;

testDir = new File(testDirPath);

File

final File[] files = testDir.listFiles((dir, nane) -> name.endsWith(".java™));
for (int 1 = 0; 1 < files.length; 1++) { File
file = files[1]; doTestFor(file);

System.out.print((1 + 1) + " ");
¥

public class ControlFlowTest extends LightCodeInsightTestCase
{ @NonNls

3. Chop (Informal
private static final String BASE_PATH = "testData/psi/controlFlow" ; Everyday Shar ing)

private static void doTestFor(final File file) throws Exception {
String contents = StringUtil.convertlLineSeparators(FileUtil.loadFile(file));

configureFromFileText(file.getName(), contents);
// extract factory policy class name Make example
Pattern pattern = Pattern.compile("?/ (\\S*).*", Pattern.DOTALL); Matcher

matcher = pattern.matcher(contents); assertTrue(matcher.matches());
final String policyClassName = matcher.group(l);

final ControlFlowPolicy policy;

if rMylinstanceFieldsControlFlowPolicy".equals(policyClassName)) {
policy # LocalsOrMyInstanceFieldsControlFlowPolicy.getInstanceQ; Result

2

Input:
element = PsiElement(type=CodeBlock, text="{1 =1, 1f(1

1)...")

Snippet:

final ControlFlowPolicy policy = LocalsOrMyInstanceFieldsControlFlowPolicy.getInstance();

ControlFlow controlFlow = ControlFlowrFactory.getInstance(getProject()).getControlFlon(element, policy); y);
Output:
controlFlow.toString) = "
0: ReadVariable 1
) 1: ConditionalGoTo [END] 2
// — and
//
pr

final String testDirPath = BASE_PATH; File

testDir = new File(testDirPath); . .
final File[] files = testDir.listFiles((dir, nane) -> name.endsWith(".java™));

for (int 1 = 0; 1 < files.length; 1+) { File
file = files[1]; doTestFor(file);

System.out.print((i + 1) + " ");
}
ks

Objectives

* What prototypes should | make to help
me find a good design”

« How should | collect feedback to
Improve my design?

Formative Study Design Activity

® For your final project (but this is an independent activity!), list
three research questions you might want to answer.

® Pick one! (Doesn’t have to be your tfavorite, just any RQ.)

® Take 5 minutes to brainstorm 3+ formative studies that would let
you answer It.

® \Which one do you think is likeliest to get the answer to the RQ?

® Turn to a partner—not any of your tinal project partners! Share
your ideas in turn.

® Do you think your partner’s idea is likely to answer the research
question? What risks/threats do you see? Are there ways it
might fail to answer the question? Share!

