Cognitive Models of
Programming

CS294-184: Building User-Centered Programming Tools UC Berkeley Sarah E. Chasins

Cognitive Models of Programming Week, Day 2

L et's wrap up our
Tuesday activity!

What we're thinking about today

® How can we design studies with programmers to get
information about their mental models?

COGNITIVE PSYCHOLOGY 19, 295-341 (1987)

Stimulus Structures and Mental Representations in
Expert Comprehension of Computer Programs

NANCY PENNINGTON

Graduate School of Business, University of Chicago

Comprehension of computer programs involves detecting or inferring different
kinds of relations between program parts. Different kinds of programming knowl-
edge facilitate detection and representation of the different textual relations. The
present research investigates the role of programming knowledge in program
comprehension and the nature of mental representations of programs; specifi-
cally, whether procedural (control flow) or functional (goal hierarchy) relations
dominate programmers’ mental representations of programs. In the first study, 80
professional programmers were tested on comprehension and recognition of short
computer program texts. The results suggest that procedural rather than func-
tional units form the basis of expert programmers’ mental representations, sup-
porting work 1n other areas of text comprehension showing the importance of text
structure knowledge in understanding. In a second study 40 professional pro-
grammers studied and modified programs of moderate length. Results support
conclusions from the first study that programs are first understood in terms of
their procedural episodes. However, results also suggest that a programmer’s
task goals may influence the relations that dominate mental representations later
in comprehension. © 1987 Academic Press. Inc.

Comnnter nroocramminge 1< a comnlex caoonitive tacsk comnosed of a va-

Animating question: What mental model do experts build of
programs they're trying to understand?

How can we figure out what mental model the programmer
has built of a program? What could give us insights into how
it's structured?

Psych 101: Priming

Example

® Participants given a "test of language ability,” a
sentence scramble test
® Three conditions, included words related to
politeness, neutral words, or words related to
rudeness

in question. For the rude priming version, the critical priming stimuli
were aggressively, bold, rude, bother, disturb, intrude, annoyingly, in-
terrupt, audaciously, brazen, impolitely, infringe, obnoxious, aggravai-
ing, and bluntly (e.g., “‘they her bother see usually’). For the polite
priming version, the 15 critical stimuli were respect, honor, considerate,
appreciate, patiently, cordially, yield, polite, cautiously, courteous, gra-
ciously, sensitively, discreetly, behaved, and unobtrusively(e.g., “they her
respect see usually”). In the neutral priming version, these |5 words
were replaced by exercising, flawlessly, occasionally, rapidly, gleefully,
practiced, optimistically, successfully, normally, send, waiches, encour-
ages, gives, clears, and prepares (e.g., “‘they her send see usually™).

Percent who interrupted

70

40

30

20

10

Polite

Neutral
Priming Condition

Rude

® Be somewhat wary of ‘social priming’ or ‘automatic
behavior priming’ results! Many turn out not to replicate

® (| chose the or
it has been rep

e on the prior slide specifically because
icated. And because | think it's cool.)

® But we're mostly interested here in positive and negative
oriming, which is about when priming affects the speed of

processing.

Expose person to a
stimulus, which will affect
response to subsequent
stimulus, without their

conscious guidance or
intent

Positive:
First stimulus increases
the speed of response to
second stimulus

Negative
First stimulus decreases
the speed of response to
second stimulus. Reaction
slower than unprimed.

Stimuli that are closely related in an
individual’s own mind typically
produce positive priming. For

more info, take a look at the
“spreading activation” literature.

Current theory is that the brain
says 'hey, ignore this category of
thing,’ and overriding this earlier
instruction makes it take longer.

(McKoon & Ratcliff, 1980, 1984; Ratclift & McKoon, 1978). In this
method, subjects study one or more texts and are subsequently presented
with a recognition test in which they must decide whether or not each
item 1n the list was in the text they had just studied. A target item in the
test list 1s preceded 1n one condition by another item hypothesized to be
In the same cognitive unit as the target and thus close in the memory
structure. In a second condition the target item is preceded by an item
hypothesized to be 1n a different cognitive unit and thus further away in
the memory structure. Under the assumption that activation of an item 1n
the memory structure activates items close to 1t, especially those in the
same cognitive unit, response time to the target preceded by an item in
the same cognitive unit should be faster than response time to the same

target preceded by an item not in the same cognitive unit (Anderson,
1983; McKoon & Ratclift, 1980); that 1s, a priming effect should occur.

Text Plan
Structure (TS) Knowledge (PK)

® Basically, the hierarchical plans we discussed
® Basically, control flow last class, with schemas as nodes

c COMPLTE PRINT
PUTATTON TE
IN!TIALIZATION READ UHPUTATIC PROCESS/READ ACCUMULAT!ON CONPY
SEQUENCE Loge SEQUENCE 0P PLAN LT
b-10

[-4 5., 11-15

... W ;
r |
TEneratorl [FILTER RUNN!NG |
2 1 [3] {4 sl 718|719 |1@ 6.11.15 S sun PLAN nvﬁ;r}m

COMPUTE
AVERAGE
6,8

21 SEQgENEE COUNTER
e PIAN
1.12
N
12 6] [15}

JUNTER

This design provides tests of whether programmers’ mental representations of program
text reflect structural distances hypothesized by the TS analysis, the PK analysis, or neither
analysis. Specifically, support for a TS macrostructure i1s obtained if response times to
targets preceded by a TS prime are reliably faster than the same targets preceded by a PK
prime. If this is the case, we can infer that the items specified by the TS analysis as forming
a cognitive unit are in fact ‘‘closer’” in memory than are the items specified by the PK
analysis. Alternatively, support for a PK macrostructure 1s obtained if response times to
targets preceded by a PK prime are reliably faster than the same targets preceded by a TS
prime. Finally, if some response times to PK-primed targets are faster and other response
times to TS-primed targets are faster, then no inferences may be drawn regarding which of

the formulations more accurately portrays the nature of mental representations.

As predicted by a text structure (TS) analysis of program comprehen-
sion, responses to TS-primed targets are on average 105 ms faster than
responses to PK-primed targets, F(1,64) = 4.51, p < .04 (subjects anal-
ysis, see Table 2, Pt. A), F(1,60) = 3.72, p < .06 (items analysis). Consid-
ering only subjects whose comprehension scores were in the top quartile
(since these subjects had a more complete understanding of the program
segments), we see (Table 2, Pt. B) that the TS-primed speedup i1s larger,
237 ms, F(1,15) = 8.35, p < .02 (subjects analysis), F(1,59) = 4360, p <
.06 (1items analysis). Comparisons using the repeated target data show the

Ignore the lines drawn between these
groups. | have no idea why they presented
the data this way. We just want to look at

the pairs of points and the relationship

A B .
3.0 o PK-PRIND coBL 3.0 between each pair.

" & TS-PRIMED COBOL

O PK-PRIMED COBOL

2.8 2.8 """ ATS -PRIMED COBOL
@
S
QO
o 2.6 o 3 2.6
z A ¢ _.® PK-PRIMED FORTRAN
w e “ N
§ 2.4 v a TS-PRIMED FORTRAN 2.4
: . .
g 2.2 2.2 '® PK-PRIMED FORTRAN
o

2.0 2.0 & 75 -PRIMED FORTRAN

A B GROUP 1 GROUP 2
MATERIALS MATERIALS SUBJECTS SUBJECTS

Fi1G. 7. Study I response times for recognition memory items comparing PK-primed item
times to TS-primed item times for each set of materials within language adjusted for the
effects of subject group (A) and for each subject group within language adjusted for the
effects of materials set (B).

50

40
2
(=
O
o
(= o
L
— 30
et
L)
-,
@
L
Q.
20
= =
o O
10 2] = of 2
O = < o = Pt
— A o o — g o O
AEHENE AN E M E
AR EBE HEEEE
AHHEE AEEEHE
' AEHHEE 51 &l 5 &) 2
INFORMATION CATEGORIES INFORMATION CATEGORIES
FORTRAN COBOL

F1G. 8. Study 1 comprehension question error rates by information category for each
language.

60

50
40
&
& 30
&
N After being asked to understand
=
S realistic program
e 20
&
| =
10 J1@ z
=2 Bl BT
|l <] =] ©
- e <C =
- < - =
O A o W
0

INFORMATION CATEGORIES
AFTER STUDY

F1G. 10. Study 2 comprehension question error rates by information category, after study
task.

60 r 50

50 50
40 40
w
o S
& 30 & 30 After being asked to modify
e w
N - realistic program
= &
L >
& (o 4
W a
c 20 29
= = x
- o <
32| 3 -
10 “| 2 10 “ | 3 z “| 3 z
_] i -J - o - - o
o w @ Wl - & wl -
— <L — = < — & - g e Q
= - < = <L = z e < =
sl <| = st<| =| 3 ol <] =1 5
& a o & Q w (VIS & a n b
0 0
INFORMATION CATEGORIES INFORMATION CATEGORIES [INFORMATION CATEGORIES
AFTER STUDY AFTER MODIFICATION AFTER MODIFICATION
hension question error rates by informr NOTALK SUBJECTS TALK SUBJECTS

F1G. 11. Study 2 comprehension question error rates by information category, after modi-
fication task, for talk and notalk subjects.

We also found evidence that in later stages of program comprehension,
under appropriate task conditions, a second representation 1s available
that retlects the functional structure of the program and is expressed in
the language of the real world domain to which the program is applied.
Our explanations for this later, task-related shift in comprehension are
speculative and draw on the concept of a situation model representation
of the program that is distinct from the macrostructure organization of
the textbase (van Dyk & Kintsch, 1983). What is clear from our research
1s that this second, functional representation is not constructed quickly or
automatically. Programmers required extensive involvement with the
program before being able to use this structure to respond to questions
about the program. Further research is needed to explore the viability of

Reflection

® Did this paper influence your idea of what kinds of
information you can get from studies of programmers?

Comprehension of computer code relies primarily on domain-general
executive resources

Anna A. Ivanovai2, Shashank Srikants, Yotaro Sueokai, Hope H. Keani 2, Riva Dhamala4, Una-May
O’Reillys, Marina U. Bers4, Evelina Fedorenkoi 2,5

1Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
2McGovern Institute for Brain Research, Massachusetts Institute of Technology

sComputer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology
4Eliot-Pearson Department of Child Study and Human Development, Tufts University

sDepartment of Psychiatry, Massachusetts General Hospital

Abstract

Computer programming 1s a novel cognitive tool that has transformed modern society. An integral part of
programming 1s code comprehension: the ability to process individual program tokens, combine them into
statements, which, in turn, combine to form a program. What cognitive and neural mechanisms support this
ability to process computer code? Here, we used fMRI to investigate the role of two candidate brain systems
in code comprehension: the multiple demand (MD) system, typically recruited for math, logic, problem
solving, and executive function, and the language system, typically recruited for linguistic processing.

Systems
(for our purposes, parts of the brain)

® Multiple Demand (MD) system: typically recruited for
math, logic, problem solving, executive function

® Language system: typically recruited for linguistic
processing

A Experiment 1 - Python Experiment 2 - ScratchdJr

code problem code problem
height = 5
weight = 100 :
bmi = weight/(height*height) F:J e i
print (bmi)

sentence problem

sentence problem

Your height is 5 feet and your
weight is 100 pounds. The BMI is
defined as the ratio between the
weight and the square of the height
of a person. What is your BMI?

Kitten walks right, jumps, and
then walks left.

B MD System Localizer

TR EE

Language System Localizer

Sit.

sentence nonwords

NOBODY COULD HAVE PREDICTED THE EARTHQUAKE U BIZBY ACWORRILY MIDARAL MAPE LAS POME

Figure 1. Experimental paradigms. (A) Main task. During code problem trials, participants were presented
with snippets of code in Python (Experiment 1) or ScratchJr (Experiment 2); during sentence problem trials,
they were presented with text problems that were matched in content with the code stimuli. No participants
saw both the code and the sentence versions of each problem. (B) Localizer tasks. The MD localizer (top)
included a hard condition (memorizing positions of 8 blocks appearing two at a time) and an easy condition
(memorizing positions of 4 blocks appearing one at a time). The language localizer (bottom) included a
sentence reading and a nonword reading condition, with the words/nonwords appearing one at a time.

Hm, ' Ell ited f
Definitely getting recruited for CP, the Code Problem! (purple) m, not getting especially recruited for

CP (even with text-based Python)

MD System MD System
A Left Hemisphere Right Hemisphere Language System
B Python ScratchJr ScratchdJr

n.s.

~

<

. @ ¥
oiﬁi-Q

)
é‘ :
o
o
°0
SR NR SP

CP SR NR SP CP SR NR SP CP
C
: : —— e - 5P Broken down by
3 - CP -l ° °
§. ' : particular brain
g: : : regions of interest
o

P P 0 of® \o & PPN \ © @ >
. 6@#"’0\0“ \&’3‘ -s" °°@\"a‘ ¢ q<°° o‘y ¢ g P "yo‘“
o°6\9 & .,O\Q ._,09 e“‘ege“ gt & «ab R ? \6? 0\9 q Q‘éﬁe &p Q@“
¢ «

SR: sentence reading. NR: non-words reading. SP: sentence problem. CP: code problem.

Sometimes you don’t have to invent something
fancy—because others have done the hard work
of developing measures!

Development of NASA-TLX (Task Load Index):
Results of Empirical and Theoretical Research

' = Sandra G. Hart
Aerospace Human Factors Research Division -

NASA-Ames Research Center
- Moffett Field. California

Lowell E. Staveland
San Jose State University
San Jose. California

ABSTRACT

The results of a multi-year research program to identify the fac-
tors associated with variations in subjective workload within and
between different types of tasks are reviewed. Subjective evalua-
tions of 10 workload-related factors were obtained from 16
different experiments. The experimental tasks included simple cog-
nitive and manual control tasks, complex laboratory and super-
visory control tasks, and aircraft simulation. Task-, behavior-,
and subject-related correlates of subjective workload experiences
varied as a function of difficulty manipulations within experiments,
different sources of workload between experiments, and individual
differences in workload definition. A multi-dimensional rating
scale is proposed in which information about the magnitude and
sources of six workload-related factors are combined to derive a
sensitive and reliable estimate of workload.

INTRODUCTION

This chapter describes the results of a multi-year research effort aimed at empirically iso-
lating and defining factors that are relevant to subjective experiences of workload and to for-

Research Approach

The goal of the research described below was to develop a workload rating scale that pro-
vides a sensitive summary of workload variations within and between tasks that i1s diagnostic
with respect to the sources of workload and relatively insensitive to individual differences
among subjects. We formulated a conceptual framework for discussing workload that was

FIGURE 3: RATING SCALE DESCRIPTIONS

Title Endpoints Descriptions
OVERALL WORKLOAD Low, High The total workload associated with the
task, considering all sources and com-
ponents.
TASK DIFFICULTY Low, High Whether the task was easy or demand-

TIME PRESSURE

PERFORMANCE

MENTAL/SENSORY EFFORT

PHYSICAL EFFORT .
FRUSTRATION LEVEL
STRESS LEVEL
FATIGUE

ACTIVITY TYPE

None, Rushed

Fatlure, Perfect

None,

Impossible

None,
Impossible

Fulfilled,
Ezasperated

Relazed, Tense

Ezhausted, Alert

Skill Based,
Rule Based,

Knowledge
Based

ing, simple or complex. exacting or for-
giving.

The amount of pressure you felt due to
the rate at which the task elements
occured. Was the task slow and leisurely
or rapid and frantic?

How successful vou think you were in
doing what we asked you to do and how
satisfied you were with what vou accom-

plished.

The amount of mental and/or perceptual
activity that was required (e.g.. thinking,
deciding. calculating, remembering, look-
ing, searching, etc.).

The amount of physical activity that
was required (e.g., pushing. pulling,
turning controlling, activating. etc.).

How insecure. discouraged. irritated. and
annoved versus secure. gratified. content,

and complacent you felt.

How anxious. worried. uptight. and har-

resed or calm. tranquil, placid, and
relaxed you felt.
How tired. weary, worn out. and

exhausted or fresh. vigorous, and ener-
getic you felt.

The degree to which the task required
mindles~ reaction to well-learned rou-
tines or required the application of
known rules or required problem solving
and decision making.

The plan for next class week!

® Next class week (right after spring break!!), we're taking a tour ot PL + HCI!

® |nstead of a standard lectures, we'll have mini-presentations on research works

® ...which means

instead of a normal HW assignment, you'll put together a

4-minute mini-presentation on a research paper or project
® These will be very casual! Low-stakes presentations. Just give us a sense of
what the work is doing and how. :)

® You can pic
papers aval

< any work that combines PL and HCI, but there’s a list of exciting

able if you want some hints

® More details are in next week's Assignment pdf

® Once you've picked a paper, please scan the schedule to make sure no one else
has already claimed the paperl Then sign yourself up for a slot so no else claims
your paper first. :)

Activity

® \What are 3 things you wish you knew about programmers’
internal state?

Activity

® Pick one of your questions and brainstorm a study design
that could help you answer it.

