
Text-Based vs. Block-Based
and Structural Editors Epic

Literature Review

CS294-184: Building User-Centered Programming Tools UC Berkeley Sarah E. Chasins
Structure Editors Week, Day 2

Reading Reflection

Discuss in groups
• Based on the readings for today, come up with:

• 3 task-audience combinations for which you’d instantiate a
language in a non-projectional editor

• 3 task-audience combinations for which you’d instantiate a
language in a projectional editor

Projectional editors and…

• …folk theories! :)

• I didn’t hear too much folk theory stuff coming out in
Tuesday’s discussion—well done, team!

• But projectional editors are a common site of folk theories,
so we’re going to go over some evidence.

Us vs. Them

If you plan to spend any additional years in CS at all, I highly recommend reading the whole paper:
https://dl.acm.org/doi/10.1145/2960310.2960312

Here’s a picture of a rainbow so you can find this slide and therefore this link later!
https://www.johnentwistlephotography.com/

https://dl.acm.org/doi/10.1145/2960310.2960312

Text- vs. Structure-Based Editors:
The lit review

Going to focus on the about the last 10 years of the literature,
since the editors available have changed a fair amount.
But we’ll also take a look at a lit review that covers prior work.

https://abc7news.com/society/end-of-the-decade-googles-top-trends-of-the-2010s/5749300/

Goals for the upcoming flood of
data

• That we all leave recalling a few of the key insights that
have come up with repeatedly

• That we know we don’t have to rely on folk theories!

• This is the sneaky secondary agenda for today, to
remind ourselves that even as we’re learning how to
evaluate PLs’ effects on programmers, we can also learn
a lot from the body of knowledge that researchers have
already built up in this space!

Statistically significant

Students using either
blocks- or text-based

programming environments
for the same language

(pencil.cc)

At this point, all students
switch to text-based Java

No particular pedagogic
approach to the transition.

They just switched.

http://pencil.cc

Basically, programming approach
once they switched to Java was the

same.
(Differences not statistically

significant.)

Other interesting data from this paper…

Non-chart but still interesting…

CoBlox

Flex
Pendant Polyscope

The paper you read

Prefix of

Students have
been trained in…

Questions are
asked in…

HSC: High School Condition
GC: Graduate Condition (enrolled in a graduate level
course on the design of educational learning environments
(mean age of 29))

This one’s about
programming on your phone!

Hybrid Structure Only

NGA: Not good at all
NG: Not good
G: Good

Slight caveat here. All the works they include cover
“block-based” editors, but they use this to include non-
projectional editors that have blocks that snap together.
Also, not all of the comparisons are against text-based

programming environments.

Mostly I’m not re-covering the same ground that’s already covered in the meta-analysis,
but I wanted to pull out the most negative studies in each category just to show that
there really are works that find negative outcomes! (That is, show that textual editors

can outperform projectional editors.)

Oops, those are “blocks," but that’s not a
structure editor. Next paper…

Mostly I’m not re-covering the same ground that’s already covered in the meta-analysis,
but I wanted to pull out the most negative studies in each category just to show that
there really are works that find negative outcomes! (That is, show that textual editors

can outperform projectional editors.)

Awesome, 2 birds, 1 stone

Alice vs. Pseudocode

Also one of the papers y’all read.

Proj: Projectional (inexperienced MPS users)
Par: Parser (text editor)
ProjE: Projectional + Experts (experienced MPS users)

• For familiar languages—e.g., in a course setting where language becomes familiar over
time—text-based and structure-based editors are surprisingly similar
• I said surprising, but in some ways this makes sense; when we hold the language

stable, it’s basically the same task just done in mildly different styles
• Over time, given the option of transitioning smoothly between the two, users start using

text more than at the beginning (though not always more than structure editing mode)
• Beginners have fonder feelings about CS when they start with structure editors vs. with

text editors
• Structure editors aren’t a good substitute for pseudocode
• For unfamiliar languages—e.g., domain-specific languages that will be used once a year

—structure editors are more efficient

A Few High-Level Takeaways

Colorful puzzle-looking editors look like
kids’ toys to me, and I refuse to believe
they’re real programming.

I don’t care that people learn just as many computing
skills with them, can transfer knowledge to other
programming environments, or that I can use the same
programming languages and write the same programs in
both kinds of environments!!! These environments feel
restrictive to me, and I can’t take them seriously!!!

It’s super cool that you now know your
biases on this topic! I hope this is useful

self-knowledge! :)

• Not because this course needs a bunch of data on projectional editors in particular,
although it’s convenient that we already have a lot of human factors studies of them.

• Perhaps a little bit more because of all the strong opinions programmers hold about
them.

• Primarily because one of the biggest goals of this course is that you won’t rely on
folk theory in your PL and programming environment design decisions.
• Our own intuitions and experiences are awesome for helping us brainstorm,

giving us the ideas that we’ll eventually prototype and put in front of users.
• But reliance on folk theories, the tenets of various PL design factions, and

personal experiences is how we got to the messy languages we have now!
• …and hopefully you’re taking this class because you think we can do better! :)

Why did we spend all this time on this?

• So how do we do better?
• Surprisingly often, you can look to the literature to see if there’s support for

your folk theory!
• There’s a lot of research already out there

• And when there’s no research out there already?
• By the end of this class, you’ll have the tools you need to design and

execute the research yourself!

Why did we spend all this time on this?

• And what should we do about folk theories?
• Don’t ignore them

• I know, I know, I just spent all this time talking about how folk theories can be dangerous,
lead us down bad design paths

• Do see them as a great source of hypotheses
• A community of practice often does observe important features of their domain before

“science” catches on
• Going to steal James C. Scott’s definition of metis: "a wide array of practical skills and

acquired intelligence in responding to a constantly changing natural and human
environment.”

• Don’t trust them blindly
• Just don’t take them as fact!
• A hypothesis is just a hypothesis. We’ll start making decisions with it once it’s been

supported or not supported

Why did we spend all this time on this?

• Please form groups!
• We have a survey going out today to let us know about your group formation

status
• We have a spreadsheet where you can include group information

• You can find the full guidelines for the final project in the Project Presentations and
Project Writeups links at the bottom of the calendar.
• That document is also an interactive FAQ! Feel free to add your questions there

if anything is unclear.
• Or feel free to swing by office hours if you want to double check whether your

group’s plan is looking good.

Final project stuff!

• Timeline things:
• Remember that the IRB never provides retroactive approval for publishing data

collected from unapproved activities
• If you think there’s any chance at all that you want to publish on the work you’ll

do during the course project:
• get your CITI training
• submit your IRB proposal
• expect the IRB to get back to you within about 2 weeks

• Even if you’re not going through the IRB process, remember that recruiting study
participants and running sessions is time consuming! It’s good to start ramping
up now!

Final project stuff!

• Timeline things:
• Around 6 weeks before the end of the semester, we’re going to switch over to

having all of our homework supporting the final project
• (Basically writing up some chunks of the final writeup for early feedback)

• If you wait until that point to start doing the work to be written up, it will already
be too late!

Final project stuff!

• Recommended formula:
• A small-scale need finding study
• A prototype of a programming language, tool, or environment that meets one or

more of the needs identified in the study

Final project stuff!

• Other formulas…
• …totally possible, but if you’re going to try something else, then pay close

attention to the next slide

Final project stuff!

• How not to get an A on the final :(

• This is a pretty laid back mostly-PhD course. Goal here is for everyone to get an A.

• Here are some things that will cause not-an-A:
• The work doesn't implement a novel programming language, programming environment, or

other programming tool
• The work doesn't include a need-finding or formative user study
• The design of the language, environment, or tool isn't shaped by the findings from the

earlier user study. (If your initial design isn't supported, then don't write up the initial
design! Write up the design after iterating based on the user study!)

• If you’re worried that your work might fall into one of the three pitfalls above, come talk to me! I
have OH every week!

Final project stuff!

Goal for next reading

• Prepare to write a program slicer! Understand the basics in
preparation for writing your own.

