
Synthesis

CS294-184: Building User-Centered Programming Tools       UC Berkeley       Sarah E. Chasins 
Program Synthesis Week 2, Day 1



Reading Reflection
Discuss in groups 
• How would the different synthesis approaches described in the 

reading affect the user interaction model? 
• How would the approaches described in the reading apply or not 

apply to the various synthesis project ideas you brainstormed last 
Tuesday? 

• Please also take a couple minutes to discuss what you learned from 
the Rosette assignment!



Reading Key Takeaways

• CEGIS!

• Distinguishing inputs—2 programs match our spec.  How will we find the one 
we want?  Ask the user what we should do on this next input, for which the 
programs produce different outputs. 

• Syntactic bias—as we’ve already discussed, language shapes the search space 
• SyGuS—SyGuS solvers can be a really useful starting point for a new synthesis 

project!  See Fig 3.10 for how nice the programs are.



SyGuS string example
(set-logic SLIA) 

(synth-fun f ((name String)) String 
    ((Start String (ntString)) 
    (ntString String (name " " "." "Dr." (str.++ ntString ntString) 
        (str.replace ntString ntString ntString) (str.at ntString ntInt) (int.to.str ntInt) 
        (str.substr ntString ntInt ntInt))) 
    (ntInt Int (0 1 2 (+ ntInt ntInt) (- ntInt ntInt) (str.len ntString)  
        (str.to.int ntString) (str.indexof ntString ntString ntInt))) 
    (ntBool Bool (true false (str.prefixof ntString ntString)  
        (str.suffixof ntString ntString) (str.contains ntString ntString))))) 

(declare-var name String) 
(constraint (= (f "Nancy FreeHafer") "Dr. Nancy")) 
(constraint (= (f "Andrew Cencici") "Dr. Andrew")) 
(constraint (= (f "Jan Kotas") "Dr. Jan")) 
(constraint (= (f "Mariya Sergienko") "Dr. Mariya")) 

(check-synth)



What did you learn from the Rosette 
activity (or HW)?



A few learning goals

You might have learned… 
• That you can write a synthesizer! 
• That there are many possible ways of designing the 

grammar, many possible ways of designing the spec 
• A visceral understanding of the difference between finding 

a program that meets your spec and the program you 
actually want.  :)  Especially in example-based specs. 

• The limits of what you can control in Rosette.
https://people.csail.mit.edu/asolar/SynthesisCourse/Lecture2.htm 

Armando Solar-Lezama

https://people.csail.mit.edu/asolar/SynthesisCourse/Lecture2.htm


One (of many) solutions



And this is adaptable as we 
get more complicated 
inputs from our user…

Original input-output pairs

Here we add 3 more

The same synthesizer now produces:

maybe a footnote maybe a pull-out 
quote



Rosette for more realistic tasks…



Rosette for more realistic tasks…



Reflections on Rosette

• Concise program -> quite complex and sophisticated 
synthesizers 

• Opacity 
• Control





Today’s topic: SMT

Logical Constraints

SMT Solvers

Answers!

Answers!Spec

You woo 
294



OK, what’s SMT?

Satisfiability Modulo Theories

ok, and what’s 
satisfiability??



Let’s back up
• SAT:  Boolean satisfiability problem; also sometimes called SATISFIABILITY 

• Given a Boolean formula, is there an interpretation of the formula that satisfies it?  
Can we replace the variables of the Boolean formula with the values TRUE or 
FALSE such that the formula evaluates to TRUE? 
• If yes, the formula is satisfiable 
• If no assignment out of all possible assignments makes the formula TRUE, it’s 

unsatisfiable 
• Examples:  

• p ∧ q is satisfiable;  (p=TRUE, q=TRUE) 

• p ∧ ¬ p is unsatisfiable 

• SAT is NP-complete 
• …but that hasn’t stopped folks from building some seriously efficient SAT solvers 

and using them to solve real problems



Next few slides shamelessly 
lifted from…

CSE507
Emina Torlak 
emina@cs.washington.edu

Computer-Aided Reasoning for Software

SAT Solving Basics

See https://courses.cs.washington.edu/courses/cse507/19au/calendar.html for more

https://courses.cs.washington.edu/courses/cse507/19au/calendar.html


Syntax of propositional logic

(¬p ∧ ⊤) ∨ (q → ⊥) 



Syntax of propositional logic

(¬p ∧ ⊤) ∨ (q → ⊥) 

Atom truth symbols: ⊤ (“true”), ⊥ (“false”)
propositional variables:  p, q, r, …



Syntax of propositional logic

(¬p ∧ ⊤) ∨ (q → ⊥) 

Atom truth symbols: ⊤ (“true”), ⊥ (“false”)
propositional variables:  p, q, r, …

Literal an atom α or its negation ¬α



Syntax of propositional logic

(¬p ∧ ⊤) ∨ (q → ⊥) 

Atom truth symbols: ⊤ (“true”), ⊥ (“false”)
propositional variables:  p, q, r, …

Literal an atom α or its negation ¬α
Formula an atom or the application of a logical connective 

to formulas F1, F2:

¬F1 “not” (negation)
F1 ∧ F2 “and” (conjunction)
F1 ∨ F2 “or” (disjunction)
F1 → F2 “implies” (implication)
F1 ↔ F2 “if and only if” (iff)



Semantics of propositional logic: interpretations

An interpretation I for a propositional formula 
F maps every variable in F to a truth value:

I : { p ↦ true, q ↦ false, …}



Semantics of propositional logic: interpretations

An interpretation I for a propositional formula 
F maps every variable in F to a truth value:

I : { p ↦ true, q ↦ false, …}

I is a satisfying interpretation of F, written 
as I ⊨ F, if F evaluates to true under I.

I is a falsifying interpretation of F, written 
as I ⊭ F, if F evaluates to false under I.



Semantics of propositional logic: interpretations

An interpretation I for a propositional formula 
F maps every variable in F to a truth value:

I : { p ↦ true, q ↦ false, …}

I is a satisfying interpretation of F, written 
as I ⊨ F, if F evaluates to true under I.

I is a falsifying interpretation of F, written 
as I ⊭ F, if F evaluates to false under I.

A satisfying interpretation 
is also called a model.



Satisfiability & validity of propositional formulas

F is satisfiable iff I ⊨ F for some I.

F is valid iff I ⊨ F for all I.



Satisfiability & validity of propositional formulas

F is satisfiable iff I ⊨ F for some I.

F is valid iff I ⊨ F for all I.

Duality of satisfiability and validity:

F is valid iff ¬F is unsatisfiable.



Satisfiability & validity of propositional formulas

F is satisfiable iff I ⊨ F for some I.

F is valid iff I ⊨ F for all I.

Duality of satisfiability and validity:

F is valid iff ¬F is unsatisfiable.

If we have a procedure for 
checking satisfiability, we can also 
check validity of propositional 
formulas, and vice versa.



SAT solver

Techniques for deciding satisfiability & validity

Search Deduction



Enumerate all interpretations 
(i.e., build a truth table), and 
check that they satisfy the 
formula.

Techniques for deciding satisfiability & validity

Assume the formula is invalid, 
apply proof rules, and check 
for contradiction in every 
branch of the proof tree.

Search Deduction

SAT solver



Proof by search: enumerating interpretations

F: (p ∧ q) → (p ∨ ¬q) 

p q p ∧ q ¬q p ∨ ¬q F

0 0 0 1 1 1

0 1 0 0 0 1

1 0 0 1 1 1

1 1 1 0 1 1

Valid.



Questions?

5 minute breakout chat 
5 minute whole-group discussion



10 minute break



Now that we know about SAT…

• Ok so…what’s SMT? 

• Satisfiability (SAT) Modulo Theories



CSE507
Computer-Aided Reasoning for Software

Emina Torlak 
emina@cs.washington.edu

Satisfiability Modulo Theories

Next few slides shamelessly 
lifted from…

Again, see https://courses.cs.washington.edu/courses/cse507/19au/calendar.html for more

https://courses.cs.washington.edu/courses/cse507/19au/calendar.html


SMT solver

Satisfiability Modulo Theories (SMT)

⋀

∨

¬

∨
⋀

x = g(y) 

2x + y ≤ 5 

(b >> 2) = c

a[i] = x

⋮ ⋮

⋮



SMT solver

Satisfiability Modulo Theories (SMT)

⋀

∨

¬

∨
⋀

x = g(y) 

2x + y ≤ 5 

(b >> 2) = c

a[i] = x

⋮ ⋮

⋮

First-Order Logic



SMT solver

Satisfiability Modulo Theories (SMT)

⋀

∨

¬

∨
⋀

x = g(y) 

2x + y ≤ 5 

(b >> 2) = c

a[i] = x

⋮ ⋮

⋮

First-Order LogicTheories



SMT solver

Satisfiability Modulo Theories (SMT)

⋀

∨

¬

∨
⋀

x = g(y) 

2x + y ≤ 5 

(b >> 2) = c

a[i] = x

⋮ ⋮

⋮

First-Order Logic

(un)satisfiable

Theories



Logical symbols
• Connectives:  ¬, ∧, ∨, →, ↔
• Parentheses:  ()
• Quantifiers:  ∀, ∃

Non-logical symbols  
• Constants:  x, y, z
• N-ary functions:  f, g
• N-ary predicates:  p, q
• Variables:  u, v, w

We will only consider the 
quantifier-free fragment of 
FOL.

Syntax of First-Order Logic (FOL)

✗

In particular, we will consider 
quantifier-free ground 
formulas.

✗



U = {☀, ☁}

I[x] = ☀
I[y] = ☁
I[f] = {☀ ↦ ☁, ☁ ↦ ☀}

I[p] = {⟨☀,☀⟩, ⟨☀,☁⟩}

⟨U, I⟩ ⊨ p(f(y), f(f(x))) ?

Universe
• A non-empty set of values
• Finite or (un)countably infinite

Interpretation
• Maps a constant symbol c to an 

element of U:  I[c] ∈ U
• Maps an n-ary function symbol f 

to a function fI :  Un → U
• Maps an n-ary predicate symbol 

p to an n-ary relation pI ⊆ Un

Semantics of FOL:  example

You decide! 
Take 1 min.



Satisfiability and validity of FOL

F is satisfiable iff M ⊨ F for some 
structure M = ⟨U, I⟩.

F is valid iff M ⊨ F for all structures 
M = ⟨U, I⟩.

Duality of satisfi ability and validity:

F is valid iff ¬F is unsatisfiable.



Equality (and uninterpreted functions)
• x = g(y)

Fixed-width bitvectors 
• (b >> 1) = c

Linear arithmetic (over R and Z) 
• 2x + y ≤ 5

Arrays
• a[i] = x 

Common theories



Signature: {=, x, y, z, …, f, g, …, p, q, …}

• The binary predicate = is interpreted.
• All constant, function, and predicate symbols are uninterpreted. 

Axioms
• ∀x.  x = x 
• ∀x, y.  x = y  → y = x

• ∀x, y, z.  x = y ∧ y = z → x = z

• ∀x1, …, xn, y1, …, yn. (x1 = y1 ∧ … ∧ xn = yn) → (f(x1, …, xn) = f(y1, …, yn))
• ∀x1, …, xn, y1, …, yn. (x1 = y1 ∧ … ∧ xn = yn) → (p(x1, …, xn) ↔ p(y1, …, yn))

Deciding T=

• Conjunctions of literals modulo T= is decidable in polynomial time.

Theory of equality with uninterpreted functions



T= example:  checking program equivalence

int abs(int y) { 
  return y<0 ? -y : y; 
} 

int sq(int y) { 
  return y*y; 
} 

int sqabs(int y) { 
  return abs(y)*abs(y); 
}



T= example:  checking program equivalence

int abs(int y) { 
  return y<0 ? -y : y; 
} 

int sq(int y) { 
  return y*y; 
} 

int sqabs(int y) { 
  return abs(y)*abs(y); 
}

Are sq and sqabs equivalent 
on all 128-bit integers?



T= example:  checking program equivalence

int abs(int y) { 
  return y<0 ? -y : y; 
} 

int sq(int y) { 
  return y*y; 
} 

int sqabs(int y) { 
  return abs(y)*abs(y); 
}

Are sq and sqabs equivalent 
on all 128-bit integers?

Yes, but the solver takes a while 
to return an answer because 
reasoning about multiplication is 
expensive.



T= example:  checking program equivalence

int abs(int y) { 
  return y<0 ? -y : y; 
} 

int sq(int y) { 
  return y*y; 
} 

int sqabs(int y) { 
  return abs(y)*abs(y); 
}

Are sq and sqabs equivalent 
on all 128-bit integers?

Yes, but the solver takes a while 
to return an answer because 
reasoning about multiplication is 
expensive.

What happens if we replace the 
multiplication with an 
uninterpreted function?



Signature
• Fixed-width words modeling machine ints, longs, …
• Arithmetic operations:  bvadd, bvsub, bvmul, …
• Bitwise operations:  bvand, bvor, bvnot, …
• Comparison predicates:  bvlt, bvgt, …
• Equality: =
• Expanded with all constant symbols: x, y, z, …

Deciding TBV

• NP-complete.

Theory of fixed-width bitvectors



Signature
• Integers (or reals)
• Arithmetic operations: multiplication by an integer (or real) number, +, -.
• Predicates: =, ≤.
• Expanded with all constant symbols: x, y, z, …

Deciding TLIA and TLRA

• NP-complete for linear integer arithmetic (LIA).
• Polynomial time for linear real arithmetic (LRA).

• Polynomial time for difference logic (conjunctions of the form x - y ≤ c, 
where c is an integer or real number).

Theories of linear integer and real arithmetic



A LIA formula that is unsatisfiable iff 
this transformation is valid:

LIA example:  compiler optimization

for (i=1; i<=10; i++) { 
  a[j+i] = a[j]; 
}

int v = a[j]; 
for (i=1; i<=10; i++) { 
  a[j+i] = v; 
}



A LIA formula that is unsatisfiable iff 
this transformation is valid:

LIA example:  compiler optimization

for (i=1; i<=10; i++) { 
  a[j+i] = a[j]; 
}

int v = a[j]; 
for (i=1; i<=10; i++) { 
  a[j+i] = v; 
}

(i ≥ 1) ∧ (i ≤ 10) ∧

(j + i = j)

Polyhedral model



Signature 
• Array operations: read, write
• Equality: =
• Expanded with all constant symbols: x, y, z, …

Axioms
• ∀a, i, v. read(write(a, i, v), i) = v
• ∀a, i, j, v.  ¬(i = j) → (read(write(a, i, v), j) = read(a, j))

• ∀a, b. (∀i. read(a, i) = read(b, i)) → a = b

Deciding TA
• Satisfiability problem:  NP-complete.
• Used in many software verification tools to model memory.

Theory of arrays



Basically…

• SAT lets us say simple things 

• SMT lets us say…other simple things.  But more 
complicated than SAT! 

• And it’s enough that we can get to some interesting tasks 

• On Thursday we’ll start playing around with some 
interesting tasks!



Install before Tuesday’s class: 
Z3 SMT solver

We’ll use the Python Z3 bindings.  First make sure you have Python installed.  Then install 
the Z3 bindings.  (https://pypi.org/project/z3-solver/) 

pip install z3-solver 
OR 
pip install z3-solver --user 

Then make sure you can run this program, which I’ll also upload in Slack. 

from z3 import * 

x = Int('x') 
y = Int('y') 
solve(x > 1, y > 1, x * y + 3 == 7)



To think about for next reading

• Like last reading, no need to memorize details—mostly want 
you to know these techniques exist and why we care about 
them. 

• Our silly Python synthesizer from last week wasn’t very 
scalable, but there are ways to make enumerative search 
scale! 

• Hierarchical search is the fancy way of saying you can split the 
problem into multiple subproblems which you can solve 
separately—this is a key idea for many important synthesis 
tasks, and you can apply it yourself in many domains.  This 
can improve scalability dramatically.  Read the example extra 
carefully.


