Synthesis

CS294-184: Building User-Centered Programming Tools UC Berkeley Sarah E. Chasins

Program Synthesis Week 1, Day 1

Reading Reflection

Discuss in groups

® |[f you could express your intent to the computer in any way at all, how
would you want to write programs?
® \WVhat input would you have the computer take?
® How would the interaction between you and the computer work?

® \What was confusing about synthesis from the first reading/your
understanding of synthesis so far?
® |[t's ok if this is lots of things! We'll be getting hands-on soon, which

should clear up a lot of contfusions. :)
® Are there applications that you'd expect are amenable to synthesis but

that haven’t made it into the literature yet? (Weren't mentioned in
Chapter 2.)

Reading Key Takeaways

® The core challenges in synthesis:
® Scalability/size of the program space
® Capturing user intent—What's a good spec? How do we get it?
® The variety of plausible specs we can get from users
® |/O examples, demonstrations, logical specs, natural language,
programs with holes, equivalent programs (!)
® The variety of search techniques
® Enumerative, constraint-based, deductive, statistical
® And at a higher level, the fact that synthesis is not just one technique
® A general sense of the problems to which synthesis has been applied
so far

Thank you for your survey
answers!

How much time should we spend in the reading discussion groups?

22 responses

® < 10 minutes
@ 10-15 minutes
¢ 15-20 minutes
@ 20-25 minutes
® > 25 minutes

How big should the reading discussion groups be?

22 responses

® 2 students
® 3 students
) 4 students
® 5 students
@ 6 students
® > 6 students

| forgot to ask if it's ok that | walk around during group discussion time. Feel free to
let me know if you have strong feelings about this.

How much time should we spend in the assignment work groups at the end of class?

22 responses

@® None

® < 10 minutes
¢ 10-15 minutes
@® 15-20 minutes
@ 20-25 minutes
® 25-30 minutes
® > 30 minutes

How do you feel about the mini breaks in the middle?

22 responses

@ Please keep. | need coffee/water/
stretch/whatever.

@ Keep the breaks, but only about 5
minutes.

¢ Don't need 'em!

@ Keep the breaks, but only on days
when we've been sitting passively/
listening to lecture.

@ Keep the breaks, but only on days
when we've been active/doing activities.

Other changes

® Some comments that readings can be a bit long; related, that it'd be nice to
mix in non-reading resources
® |'ll be extra clear about which readings are tfine to skim vs. require quite close
reading!
® (Sorry, other people said length/amount of content was a KEEP, so we're not
going to completely remove long readings.)
® |'|l start mixing in some non-reading resources for topics that have good non-
paper sources
® Discussions on recent PL+HCI works or work that folks in class are doing

® This is coming up! (Basically as soon as we've built up a foundation.)

Why synthesis?

’ - P‘ RICY)
4 | &
L)
. ’ ‘ ; ' !

There are a few PL techniques

that just keep coming up in

HCI tasks!
o f?‘f ® Program synthesis
- e M‘ o Projection/.S’.cructure editors
stuff... . o e ® Program slicing
L aRaer o Others come up, but these

Synthesis seem to come up all the time.

Demo time

FlashFill

Do you have Excel installed? You can probably run this demo on your own
laptop while | run it on mine!

Automating String Processing in Spreadsheets using Input-Output Examples, Sumit Gulwani

4)
H

A

Whole Name

Alvin Cheung
Armando Fox
Jonathan Ragan-Kelley
Koushik Sen

Sanijit A. Seshia
Katherine A. Yelick

B2 : fx Prof. Cheung B3
A B
1 Whole Name 1
2 |Alvin Cheung | Prof. Cheung _| 2
3 Armando Fox 3
4 Jonathan Ragan-Kelley 4
5 Koushik Sen S5
6 Sanjit A. Seshia 6
7 Katherine A. Yelick //
o 8

B

Prof. Name

Prof. Cheung

|Prof. Fox _|
Prof. Kelley

Prof. Sen

Prof. Seshia

Prof. Yelick

- 4
;,/

Scythe
To run this one, head to: https://scythe.cs.washington.edu/demo

Synthesizing Highly Expressive SQL Queries from Input-Output Examples, Chenglong Wang

https://scythe.cs.washington.edu/demo

’ C qw { - J : H ome D emo

© Click the Synthesis button to synthesize Queries from the example!

<+ Empty Panel = Remove Panel Load An Example Panel v § Connect to Database ~ Offline (No backend DB connected)

A Example Task: Find the span of career peak (the year when the first paper and most cited papers are published) of computer scientists given the list of their pushlished papers.

t2.author) As tl1 Join
papers As t8)) As t7
Where t7.max_citation = t7.citation
And t7.author = t7.authorl) As t4)) As t6
Where t6.author = t6.authorl;

Synthesize Synthesized Query 1~ = RunonDB @ Visualize @~

<4 Add Table = Remove Table

papers output
author title year citation author min_year peak_year S::z:‘t t6.author,t6.min_year, t6.year
H. Simon Understanding wi 1974 2rt X E H. Simon 1974 1997 X (Select t5.author, t5.min_year, t4.author As authorl, t4.year
H. Simon Organization 1997 20057 X . R. Tibshirar 1995 1995 X From ((Select
H. Simon The sciences of tl 1996 17561 X f P. Bork 1998 1998 X t3.author, Min(t3.year) As min_year
R. Tibshirani Developmental re 2004 50 X Add Row ' Add Col | Del Col rrom
o e . : . : papers As t3
R. Tibshirani Flexible discrimin 1995 51 X :
. Group By
R. Tibshirani IRF9 and STAT1 ¢ 2008 47 X | t3.author) As t5 Join
P. Bork Automated pair-w 1998 51 X (Select t7.author,t7.year
P. Bork UN targets top kil 2011 19 x| From
' (Select tl.author, tl.max_citation, t8.author As authorl, t8.ti
Add Row @ Add Col Del Col : : :
: tle, t8.year, t8.citation
Constants @ None ? E From ((Select
: t2.author, Max(t2.citation) As max_citation
: From
Aggregators = (Optional) ? | papers As t2
| Group By
|

Helena
If you want to run this one, you have to install an extension:
http://helena-lang.org/install

Rousillon: Scraping Distributed Hierarchical Web Data, me & my collaborators :)

http://helena-lang.org/install

® © ® 9 Extensions X g Profiles X 4+

< 2> C @ https://scholar.google.com/citations?hl=en&view_op=search_authors&mauthors=label%3Acomputer_science&btnG= * O y
i Apps % Extensions \ BES Other Bookmarks
= (Google Scholar label:computer science B g

® Profiles @ Myprofile Y My library

Geoffrey Hinton Cited by 246012

Emeritus Prof. Comp Sci, U.Toronto & Engineering Fellow, Google
Verified email at cs.toronto.edu

|
machine learning neural networks artificial intelligence cognitive science

computer science

DEYWIS MORENO Cited by 206009

High Energy Physicist, Universidad Antonio Narino
Verified email at uan.edu.co

High Energy Physics Computer science

David S. Johnson Cited by 176731

B, Visiting Professor, Columbia University Computer Science Department
"~ Verified email at research.att.com

Algorithms computer science optimization traveling salesman problem bin packing

David Haussler Cited by 174202

Scientific Director, UC Santa Cruz Genomics Institute, University of California, Santa
Cruz
Verified email at soe.ucsc.edu

genomics computer science molecular biology evolution cancer

L. vapnik Cited by 170728

LENS

before after
cmp rl, #0
add 12, e, 87 asr 13, rl, #2
mov r3’ r3’ 1sr #29 add r2’ rl, r3, lsr #29
movge r2, rl, ldrb ro’ [ro’ r2, asXy #3]
ldrb 1r0, [r0, r2, asr #3] and r3, r2, #2438
; sub r3, rl, r3
bic rl, r2, #248
asr rli, r0O, r3
sub r3, rl, r3
and r0, rl1, #1
asr rl, rO, r3
and rO, rl1, #1
(b) (c)

| know, | know, not as photogenic, but it

makes programs much faster!!

Scaling up Superoptimization, Phitchaya Mangpo Phothilimthana

Falx
Coming soon to https://falx.cs.washington.edu/

Visualization by Example, Chenglong Wang

5 min break

Back up. What's program
synthesis?

Find a program P that meets a spec $(input, output):

Correctness Condition

/ \
IP.vx.P(x,P(x))

\ Find P

® \When to use synthesis:

® Ease-of-use/productivity: When writing ¢ is faster or easier
than writing P

® Correctness: when proving ¢ is easier than proving P

Hey, I've seen this betore

| give computer a high-level Computer gives me back a low-
description of what | want it to do level program for doing it

Isithis] compilation ?

Synthesis vs. compilation

Compilation

Typically deterministic

Typically performs lowering
via a sequence of rewrite
rules

Synthesis

Searches a space of
possible programs

...or sometimes a space of
possible sequences of
rewrite rules! look, the line

is blurry _(*V)_/

If it involves search, we
usually call it synthesis

Even if you don't take away anything else from
today’s lecture, take away that you can write a
synthesizer!

Even if you don't take away anything else from
today’s lecture, take away that you can write a
synthesizer!

What do we need to decide to
make a synthesizer?

Hint: 3 things

How does the user express what they want the program to do?
What space of programs is the synthesizer allowed to use?

What algorithm will the synthesizer use to search that space?

What do we need to decide to
make a synthesizer?

Hint: 3 things For today’s sample synthesizer, let’s pick...

How does the user express what they want the program to do?

Input-Output examples

What space of programs is the synthesizer allowed to use?

Anything in a Domain-Specific Language (DSL) of our choice
What algorithm will the synthesizer use to search that space?

S EnUmeration Which is to say...generating programs until we find one that works

o i
o NS i
el
R R e 2
PR -
TWE Wi g o}

Input-Output Examples

® Any work here?

® Nah, this is going to be pretty straightforward.

® Example:
({“X” N 3’ “yn R 7}, 23)
({“x" o 4, “y" - 4}, 19) Can you guess it?? Did you already

synthesize this in your head?

({\\X" N 2, \\y" R 12}, 31)

Domain-Specitic Language

® This one’s a classic, but for another domain we might
design something more customized

expr .= N
v
(expr + expr)

(expr - expr)
(expr * expr)

Enumeration

level O:
[OI 1' 2' 3'
count: 7

Ok, no luck so far. Let’s just mash these

4, ¥, X] . . .
; together! In every possible combination!

level 1 :

Spec:
({ V\><//
(\\><" N 41,
({ \\><"

V\Ef" R '7 } ,
V\Ef" R 14 } ,
V\BZ" R]-;2 } ,

l

Space of programs:
N

eXpr .=

23)
19)
31)

[0, 1,

2,

3,

4, vy, x, (0+0), (0*0),

(o_o)l

(0+3)r (0*3)1 (0_3)1 (0+4)l (0*4)1 (0_4)1
(1*0), (1_0)1 (1+1)l (1*1)1 (1_1)1
(1*4)1 (1_4)1 (1+Y)l (1*Y)l (1_Y)l
(2*1)1 (2_1)1 (2+2)l (2*2)1 (2_2)1
(Z*Y)r (Z_Y)l (2+x)l (z*x)l (z_x)l
(3*2)1 (3_2)1 (3+3)l (3*3)1 (3_3)1
(3*X), (3_x)l (4+0)l (4*0)1 (4_0)1
(4*3)1 (4_3)1 (4+4)l (4*4)1 (4_4)1
(Y*o)r (Y_O)l (Y+1)l (Y*l)l (Y_l)l
(v*4), (y-4), (yty), (¥y*y), (¥-Y),
(X*l), (x_l)l (X+2)l (X*z)l (x_z)l
(x*y), (x-y), (x+x), (x*Xx), (x-X)]

(140),
(1+4),
(2+1),
(2+y),
(3+2),
(3+x),
(4+3),
(y+0),
(yt+4),
(x+1),

(x+y),
count:

154

(0+1),

(0+y),
(1+2),

(1+x),
(2+3),
(3+0),
(3+4),
(4+1),

(4+y),
(y+2),

(y+x),
(x+3),

(0*1),

(0*y),
(1*2),
(1*x),
(2*3),
(3*0),
(3*4),
(4*1),
(4*y),
(y*2),
(Y*x),
(x*3),

(0_1)1

(O_Y)r
(1_2)1
(1—X),
(2_3)1
(3_0)1
(3_4)1
(4_1)1
(4_Y)r
(Y‘z)r
(Y‘x)r
(X—3),

(O+2)I (0*2)1 (0_2)1

(0+x),
(1+3),
(2+0),
(2+4),
(3+1),
(3+y),
(4+2),
(4+x),
(y+3),
(x+0),
(x+4),

(0*x),
(1*3),
(2*0),
(2*4),
(3*1),
(3*yY),
(4*2),
(4*x),
(y*3),
(x*0),
(x*4),

(O_x)l
(1_3)1
(2_0)1
(2_4)1
(3_1)1
(3_Y)I
(4_2)1
(4_x)l
(Y‘3)l
(x_o)l
(x_4)l

Hm, still no luck. Keep mashing.
level 2 :

[or lr 2/ 3r 4! Y, X, (0+0)r (0*0), (o_o)l (0+1)l (0*1)1 (0_1)1
(0_2)1 (0+3)r (0*3)1 (0_3)1 (0+4)r (0*4)1 (0_4)1 (0+Y)l (O*Y)I
(0-x), (1+0), (1*0), (1-0), (1+1), (1*1), (1-1), (1+2), (1*2),
(1_3)1 (1+4)r (1*4)1 (1_4)1 (1+Y)r (1*Y)l (1_Y)l (1+x)l (l*x)l
(2-0), (2+1), (2*1), (2-1), (2+2), (2*2), (2-2), (2+3), (2*3),
(2_4)1 (2+Y)r (Z*Y)r (Z_Y)r (2+X), (z*x)l (z_x)l (3+0)l (3*0)1
(3_1)1 (3+2)r (3*2)1 (3_2)1 (3+3)r (3*3)1 (3_3)1 (3+4)l (3*4)1 (3_4)1
(3_Y)r (3+x)r (3*X), (3—X), (4+0)r (4*0)1 (4_0)1 (4+1)l (4*1)1 (4_1)1
(4-2), (4+43), (4*3), (4-3), (4+4), (4*4), (4-4), (4+y), (4*y), (4-

(4-
(y-
(x-0), (x r (X ’
(X—4),

(0+2),
(O_Y)l
(1_2)1
(l_x)l
(2_3)1
(3_0)1

(0*2),
(0+x),
(1+3),
(2+0),
(2+4),
(3+1),
(3+y),
(4+2),
4+x),

(0*x),
(1*3),
(2*0),
(2*4),
(3*1),
(3*Y),
(4*2),
4*x),

)/

4

(expr + expr)
(expr - expr)

(expr * expr)

’ X ’ X ’ X= ’ X ’ ’ ’
(0+0), (0*0),

42 P 1. A N

Xra),
(0+1), (0*1),

4 R 1. ™ 4 R 1. 9

Enumeration...pruned with Operational

—Which is the fancy program synthesis way of

Equivalence

saying “they do the same thing on the inputs
we care about.”

Spec:
({ V\><//
(\\><" N 41,
({ \\><"

Ok, these are all just 0...which we already
have. Why'd you give me these???

l
W

V\EZVV R '7 } ,
V\EZVV R 14 } ,
V\le' R]-22 } ,

23)
19)
31)

level O:
[OI 1' 2' 3'
count: 7

4, v, X]

level 1 :
[0, 1, 2, 3,

4r Y, X, (0+1)l (0*1)1 (0—1), (O+2)I (0*2)1 (0_2)1

Space of programs:
N

eXpr .=
4

(expr + expr)
(expr - expr)

(expr * expr)

(0+3),
(1+0),
(1+4),
(2+1),
(2+y),
(3+2),
(3+x),
(4+3),

(y+0),
(y+4),
(x+1),

(xt+y),
count:

(0*3),
(1*0),
(1*4),
(2*1),
(2*y),
(3*2),
(3*x),
(4*3),
(y*0),
(y*4),
(x*1),
(x*y),
154

(0_3)1
(1—0),
(1_4)1
(2_1)1
(Z_Y)r
(3_2)1
(3—X),
(4_3)1
(Y‘o)r
(Y‘4)r
(X—l),
(x_Y)r

(0+4),
(1+1),
(1+y),
(2+2),
(2+x),
(3+3),
(4+0),
(4+4),

(y+1),

(Yty) .,
(x+2),

(x+x),

(1*1),
(1*y),
(2*2),
(2*x),
(3*3),
(4*0),
(4*4),
(y*1),
(Y*Y)
(x*2),
(x*x),

(*)l (-)l

(1_1)1
(1_Y)l
(2_2)1
(z_x)l
(3_3)1
(4_0)1
(4_4)1
(Y_l)l
(Y_Y)l
(x_z)l
(x-x)]

(0+y),
(1+2),

(1+x),
(2+3),
(3+0),
(3+4),
(4+1),

(4+y),
(v+2),

(y+x),
(x+3),

(0*y),
(1*2),
(1*x),
(2*3),
(3*0),
(3*4),
(4*1),
(4*y),
(y*2),
(Y*x),
(x*3),

(O_Y)r
(1_2)1
(1—X),
(2_3)1
(3_0)1
(3_4)1
(4_1)1
(4_Y)r
(Y‘z)r
(Y‘x)r
(X—3),

(0+x),
(1+3),
(2+0),
(2+4),
(3+1),
(3+y),
(4+2),
(4+x),
(y+3),
(x+0),
(x+4),

(0*x),
(1*3),
(2*0),
(2*4),
(3*1),
(3*Y),
(4*2),
(4*x),
(y*3),
(x*0),
(x*4),

(O_x)l
(1_3)1
(2_0)1
(2_4)1
(3_1)1
(3_Y)I
(4_2)1
(4_x)l
(Y‘3)l
(x_o)l
(x_4)l

And eventually we’ll find some that aren’t the same on all inputs, but are

the same on {"x" — 3, “y" = 7}, {"x" — 4, "y" — 4}, and {"x" — 2,

n, 1

y" = 12}

This is exactly as simple as it looks. Seriously, you can write
this synthesizer in vanilla Python in one page. Let’s see it!

1 itertools
2 class Op:
3 ops "+": lambda a,b: a+b, "-": lambda a,b: a-b, "x": lambda a,b: a+b}

def __init__(self, a, op, b):

self.a a; self.op op; self.b b
def __repr__(self):
(e str(self.a) self.op + str(self.b) ")

def interpret(self, argDict):
g Op.opslself.opl(self.a.interpret(argDict), self.b.interpret(argDict))
10 class Val:
11 def __init__ (self, v):
12 self.v vV
13 def __repr__(self):

str(self.v) . e g -
def interpret(self, argDict): This one isn’t pruning at all.

O laee yars ey What do we do to prune with OE?
18 def __init__ (self, n):
19 self.n n

20 def __repr__(self):

21 self.n

22 def interpret(self, argDict): Just an extra 6 lines!
23 argDict[self.n]

25 spec [({"x": 3, "y": 7}, 23),
26 ({"x": 4, "y": 4}, 19),
27 ({"x": 2, "y": 12}, 31)]

28 expected_outputs [output inputDict, output spec]
29 def test_against_spec(expr):
30 outputs [expr.interpret(inputDict) inputDict, output spec]
31 (outputs expected_outputs):
32 “found it!", expr
exit()
exprs [Val(x) X range(5)] [Var(x) X spec[0] [0].keys()]
"level 0:\n", exprs, "\ncount:", len(exprs)
expr exprs:

test_against_spec(expr)

ops Op.ops.keys()

41 level 0
42 (True):
level 1
44 "level", level, ":"
pair itertools.product(exprs, exprs):
op ops:

new_expr - Op(pair([@], op, pair[1])
test_against_spec(new_expr)
exprs.append(new_expr)

exprs, "\ncount:", len(exprs)

Sarahs-MBP:othermaterials schasins$ python onePageSynthesizer.py
level O:

[O I 35 A, Vel

count:

level

count:

level

. . count:
Prur"ng based on Opel‘atlonal / level 3

Equivalence can cut down our found it! (3+(2*(y+x)))
Sarahs-MBP:othermaterials schasins$ python onePageSynthesizerOE. py

search space dramatically! level 0
| O, i S e ey]
count: 7/
level 1 :
And this is just at level 2! count: 63
level 2 :
count: 2051
level 3 :
found it! (3+(2*(y+x)))

So if you're ever watching a synthesis talk and get
confused...just remember enumeration. At a
sufficiently high level of abstraction, it's just going
through programs until it finds one that works.

We can make enumeration smarter

® Doesn’t have to be just start with the smallest program, then list all the programs in
order of size until you find one that works
® \e can have heuristics or language models that let us explore better/likelier
programs first instead ot smaller programs first
® There are other ways of pruning (other than Operational Equivalence) that let us cut
out much more of the space
® \Ve can make smart choices about what constants to include
® This was the easy-to-write version, but there are many ways to make it more effective
® For a long time, the winner of the SyGuS competition (the primary competition for
people who write synthesizers) was an enumerative solver!
® This is a real technique!

Quick brainstorm. What woulo
you like to synthesize?

Synthesis is like a buffet

I

—_—

S = Stochastic g
st Tl synthesis %‘ |

e N
——

e =
2+ 1 Deductive ;‘? o) 5 23F
s Lalr g : £]

svnthesis™/ ;e

P LS S PV

Constraint- Enumerative ‘

based synthesis

- AP '.""‘*J
< r & o~ N4

synthesis = w.. — N 7

® This is not one technique that either applies or doesn’t apply to
your problem

® [t's a whole family of techniques

® Tackling a new problem, you'll probably be looking through a
host of existing approaches and tools...

® |f you read synth literature, you'll see very different domains

formalized in very different ways. This isn't accidental!

® ...and maybe inventing your own. Custom synthesizers are still
common

To think about for
reading

Thursday'’s

® The issue of ambiguous specs. As designers of usable

tools, do we want to prevent ambig
how? Do we want to allow them? |
affect our synthesizer?

® \What constrains the design of a our
synthesis?

uous specs? It yes,

-yes, how does this

target languages for

® \What's the tradeoft between designing for making the

synthesizer’s task easier vs. designing for the user of the

tool?

Please install before next class

https://docs.racket-lang.org/rosette-guide/ch_getting-started.html#%28part._sec~3aget%29

The Rosette Language

ABOUT DOWNLOAD DOCS APPS COURSES PAPERS

A brilliant language from

About Rosette Emina Torlak

Rosette is a solver-aided programming language that extends Racket with language
constructs for program synthesis, verification, and more. To verify or synthesize code,
Rosette compiles it to logical constraints solved with off-the-shelf SMT solvers. By
combining virtualized access to solvers with Racket's metaprogramming, Rosette

Mﬂllf\ﬁ :4‘ P g, N 4‘1\ AA\ If\lf\lf'\ Fa 3 llﬂ+|ﬂﬂﬁ:ﬁ "\II\IJ A Y IAV:GI\"\J':I'\H 4"\/\"'\ cf\l’ ™ N\’ l"\l"\l\ll 1 7% A "™ S \/f\l] A:MV\I\ 9

