Practical Prototyping for
Programming Tools

Andrew Head, Postdoctoral scholar, UC Berkeley

Happy 2069th
birthday, Lucan!

Happy 2069th
birthday, Lucan!

Happy 2069th
birthday, Lucan!

'Let the mind of people be
blind to design problems; they
fear, but leave them hope.'

Objectives

e \What prototypes should | make to help
me find a good design?

e How should | collect feedback to
improve my design?

7~

uristics
:

ble whenever av:

from errors
jes), precise

1y indicate the problem,

age (N0 co¢

-, impact: pcrsmenre
s before prod
hould b€ given hi
1d be given 1o priority

able on pm\(»r\

uct can be rc\eawd

gh pr\m‘\ty

, SO st

mat all

Saved Colo o

Example Heuristic Evaluation Worksheet (1 per evaluator)
prototype lh\m' and evidence 3 '”L.“',.N'“N;“w Faah :
” L seve
e nE s e s (0-4)
Example S T T
when deleting 2 song froma playlist, UNDO is freedom
greyed out, s0 you must import the SOng again
5o Example Heuristic Evaluation worksheet (1 per evaluator)
— S : ; . A Sel
Pprototyp€ Issue and evidence Heurlstic Name Severity
\ (0-4) #1. Vis
Example The sys
SR AR] P iy s approp!
{”lldl?L'A)Illllhlnll%lllh\l[][i(!rf!’(! For instance: User contro! and |3 \
when deleting @ song froma playlist, UNDO s | freedom #2.Ma
;:n’yml out, S0 you must import the song again ™
e i o Rttt , — e sys
rather t
‘/._,»,,,4.,,_,‘,,/_#_‘,,A,,_ e e
/ Users o
P2 da leave th
OF Y notatrme T R ” redo
\
\ #4. Cor
Users s
thing. F

7~

uristics
:

ble whenever av:

from errors
jes), precise

1y indicate the problem,

age (N0 co¢

-, impact: pcrsmenre
s before prod
hould b€ given hi
1d be given 1o priority

able on pm\(»r\

uct can be rc\eawd

gh pr\m‘\ty

, SO st

mat all

Saved Colo o

Example Heuristic Evaluation Worksheet (1 per evaluator)
prototype lh\m' and evidence 3 '”L.“',.N'“N;“w Faah :
” L seve
e nE s e s (0-4)
Example S T T
when deleting 2 song froma playlist, UNDO is freedom
greyed out, s0 you must import the SOng again
5o Example Heuristic Evaluation worksheet (1 per evaluator)
— S : ; . A Sel
Pprototyp€ Issue and evidence Heurlstic Name Severity
\ (0-4) #1. Vis
Example The sys
SR AR] P iy s approp!
{”lldl?L'A)Illllhlnll%lllh\l[][i(!rf!’(! For instance: User contro! and |3 \
when deleting @ song froma playlist, UNDO s | freedom #2.Ma
;:n’yml out, S0 you must import the song again ™
e i o Rttt , — e sys
rather t
‘/._,»,,,4.,,_,‘,,/_#_‘,,A,,_ e e
/ Users o
P2 da leave th
OF Y notatrme T R ” redo
\
\ #4. Cor
Users s
thing. F

cwaallds

P |1 N

Who is this guy?

Gather to: | Iy Clipboard | & Nogebook | ‘D Revisiol
350 -

import seaborn as sns

10 15 175 20 225 25 275 30 325 35 375 40 50

i n
spany\nlocaticn
In vors_cof_cacec.cev') v p_firetsTew
1 1’]dro
In (3): d2("'Razizg'])
£13): <matplotiib.axes. ssbplots.Axesdubplos at 0x10%E40f2E> o
) In [14): 3 wa|', ‘Specific Ds
| road Bean\nOrigin'), is = 1, iaplace = ¢
» |
o 1 In (18] @f = df,leer,~df . columss duplicated|))
. > In [12]: from sklsarn.sodel selecticn import traisz test smplit
Rating § 0 |
10 { In [13): X = df.drop{ 'Rating’', axim = 1| MAestures
X y = df('Raziag’) # Targec V¥ "
| E_traim, X_teet, y_trais, y_teet = traln_vess_splincx
[-— e -- - - . - In [14): ¢ shleazrn.tre wifier
by
In [135)
. M . 2 I (4 ‘4.. va\nrercent’ | = '”i Wwoa\nrercent ;.plt.le;-:.ar_. .
ju—) Cocve roent’ | = &f[Cocos'\nPurcunt ' |.etz.cuples o
predictjons = ree.predic e :
/ Lty ™
. 2
= Fal

roturs percent

Figure 3: Cleaning a notebook with code gathering tools. Over the course of a long analysis, a notebook will become cluttered and
inconsistent (1). With code gathering tools, an analyst can select results (e.g., charts, tables, variable definitions, and any other code output)

(2) and click “Gather to Notebook” (3) to obtain a minimal, complete, ordered slice that replicates the selected resul

ts (4).

Managing Messes in Computational Notebooks, CHI '18

Who is this guy?

@ objects.py Tutorial Editor X

: Tor Tosooror || o mpserer | oo @ @ Embbedded rich text editors
s || 1] oty (G Zinte—Geelf, v, 1) / for writing prose.

2 class Shape:

self.h = h -
self.description = "This shape has no Every time we go to create a new “Sha[')e" type variable in our program, the program o’

self.author = “Nobody has claimed to | will look for the "init" of the shape class. From there, it will assign parameters to
’ class attributes using the body of the constructor.

10 def area(self): :

11 return self.w * self.h

- (def __init__(self, w, h)‘D

3 P . self.w = w . .

vl I il onbsmpapitnig celf h - b \ Edits to code automatically

15 self.description = "This shape has not beei

16 def set_scale(self, scale)s > propagate across all snippets and

Y e) (T T To create a shape variable, we might write the following:

18 self.h = self.h % scale ’ . r1

1 the source program.

20 rectangle = Shape(90, 45)

21 class Square(Shape):

: et ;i:i\z—_(ielf' w): In dot notation, you specify the object trying to access something from, follow . .

): SElf. h ; W |t W|th a "" and then |nc|ude ame of ﬂ\o attirnnihta vnn \uanl_la_nnl_l.bn_u.zh.an_tznm;’ Outputs u pdate | Ive by assem bl I ng
;5 ’ VIEW AS SNIPPET PROGRAM SNAPSHOT

33 rectangle = Shape(100, 45) --------- 9_qgl£.-ws€'ectangle.@ = ADD CONSOLE OUTPUT Q . / the tUtoriallS Snippets in Source
[order and executing them.

28 (L UL EL LTI LT e e =
29 print(rectangle.w,<Eectangle.hi)""‘ (90, 45) -
30 .

Figure 4. Writing tutorials with Torii. Torii helps authors write tutorials by keeping source programs, snippets, and outputs consistent with each other, while
still letting authors organize the code in the tutorial flexibly. An edit to code anywhere in the tutorial workspace automatically triggers an update to clones of that
code in the source program and snippets, and to all outputs generated from that code.

Composing Flexibly-Organized Step-by-Step Tutorials from Linked Source Code, Snippets, and Output, CHI '18

Submissions

@ = feedback given
vy = passed all test cases
¢ = fix suggested

Submission 109

Submission 116
Submission 305
Submission 308
Submission 587
Submission 593

0 Q Q O Q| D

Order by:
Submission IDs
Test case results

® Suggested fixes

Suggested fixes

Submission 12
Submission 17
Submission 55
Submission 60

Submission 65

Bt e "2

Who is this guy?

Student Submission

You can edit this code. e Show original Edit Show diff

def accumulate(combiner, base, n, term):
total = @

while n > @:
total = combiner(total, term(n))
n -=1

return combiner(base, total)

Run tests again

Test results: Some tests failed

Print output (test case 1)

@'est Input Result Expected Output

/1 (lambda x, y: x + y, 11, 5, lambda x: x), Lo 128 26
2 (lambda x, y: x + y, 8, 5, lambda x: x), PN |- 15
3 (lambda x, y: x * y, 2, 3, lambda x: x * x), — (%] 72
4 (lambda x, y: x + y, 11, @, lambda x: x), U | 11
5 (lambda x, y: x + y, 11, 3, lambda x: x * x), — 25 25

[This test case produced no console output.]

Feedback

Student error detected.

This wrong answer can be "fixed" with the edits for submission 64 . This is the fix:

O,

def accumulate(combiner, base, n, term):
total = @
+ total = base
while n > @:
total = combiner(total, term(n))
n -=1
return combiner(base, total)
+ return total

« Apply this fix to the student's code

Another student with this same problem has already been given feedback. Do you want to use the
feedback for them here?

@ -~ Use existing feedback ~

Notes Add

Figure 4. FIXPROPAGATOR interface: The left panel shows all of the incorrect submissions (A). When the teacher selects one, the submission is loaded
into the Python code editor in the center of the interface (B). Then the teacher can edit the code, re-run tests, and inspect results. The bottom of the
center panel shows the list of tests and console output (C). Once the teacher has fixed the submission, they add some hint that will be shown to current
and future students fixed by the same transformation. The bottom of the left panel shows submissions for which the system is suggesting a fix. When
the teacher selects a suggested fix, it is shown as a diff in the right panel (D). The teacher can reuse the previously written hint or create a new one (E).

Writing Reusable Code Feedback at Scale with Mixed-Initiative Program Synthesis, CHI '18

Desigh methods

Desigh methods

Designh methods for

programming tools

THE DESIGN CYCLE

design

evaluate v prototype

DESIGN IDEAS DIVERGE AND CONVERGE

hundreds! design

brainstorming

prototypes are used to

¥~ evaluate answer questions about design.

ideas critique

project

3. o
: . done &+
cycle 1 cycle 2 + cycle N...

project progress

DESIGN IDEAS DIVERGE AND CONVERGE

hundreds!
ideas
project
. done &
cycle T cycle 2 . cycle N...
0

project progress

* 3-6 weeks-ish *

DESIGN IDEAS DIVERGE AND CONVERGE

hundreds!

) yOu are

somewhere here
ideas
project
. done &

cycle T cycle 2 . cycle N...

0

project progress

* 3-6 weeks-ish *

Objectives

e \What prototypes should | make to help
me find a good design?

e How should | collect feedback to
improve my design?

Yoda

(your user/participant)

Highly recommend the expert-apprentice relationship model for
contextual inquiry.
Don’t typically recommend offering piggyback rides as part of it.

=) N

Don't look at me!

Discussion time

Think of an idea you had for a programming
sometime In the past that you were really
exclted to work on.

What convincing evidence did you have that
it was a good idea?

Don't look at me!

Discussion time

Think of an idea you had for a programming
sometime In the past that you were really
exclted to work on.

What convincing evidence did you have that
it was a good idea?

Brainstorming

1. Deter judgement

2. Encourage wild 1deas

3. Build on the ideas of others
4. Stay tfocused on the topic

5. One conversation at a time
0. Be visual

7. Go tor quantity

How do you know these
ideas are any good?

From IDEO Design Kit: Brainstorm Rules

PRAGMATIC
PROTOTYPING

https://www.thedesignexchange.org/design_methods/21

P
.
. ad
s :

- . -
- " - »

- -
. .’.,- ™ Sw = .
rar e " "“"‘--r.c.-.. R
- R - -

“ L
LR]
» o
. -
e e -
g oy - > - : o

Feor ve

: - " >N
P i ""':.v‘:~° e
g Wy 4V g TR -
‘\ - h L D
'bq‘

\.o - R ———
LR 2] P A . g VN gy
L -.._.‘ .‘ ’..‘) : "w‘o'”'.. od 2 v

BB g ® . . oy

»

P g
o 2 Y

4

~ -

FIDELITY

LOW FIDELITY HIGH FIDELITY

Many details missing. Looks like tinal product.

ESTART =
n%ﬂ‘éessmn

#1 RULE OF PROTOTYPING

Make prototypes with a well-defined
purpose and scope. Adjust the
fidelity of your prototype to match
the purpose and scope.

SCOPE: WHAT DOES YOUR PROTOTYPE

PROTOTYPE?

Rol : :
o Role: function, fit

Look and feel: appearance,
sensory experience
Implementation: algorithms,
engineering, code

Integration

Implementation

Look and feel

From Houde and Hill - What do Prototypes Prototype?

» - -
P | -
. - U‘Q‘. ..
” it

Role Prototypes

- " A . L . ' " I‘
c'.." > WY

S g\ W ™

<\

Look-and-Feel Prototypes

| T
f - ‘ -

- Prototypes for the
| Microsoft mouse

Look-and-Feel Prototype

) (G
.“ﬁ.
m_c i

: r?
N"vmq’w \..-ﬁ\ \ .-ﬂ \. v- b. :
ST & ,...”??
0 .».vw Ve W,

{2507 .”»...w

TN . (-
y .ﬁ!fﬂ)%— r.;
ANy v.

.o-l-.-. '/

W
O
Q.
>
afd
O
afd
O
-
Q.
| -
.
afd
(O
afd
| -
),
&
9
Q.
£

|
W
9
=
S
~
™~
S
-~
S =
e o
St~ N
S ™
M...
~ @
SO
mC
S &
v =
= .8
N -
L~
S S
—~—
=~ &
oy
o S0
=2
-~ -
-
s
SAEES

Implementation Prototypes

— . — - - —

—

IntList& IntList::operator=(const IntList& oldList)
{
register long n = oldList.size;

if {n 1= size) setSize(n);

register int« newPir = &values{n];

register int» oldPir = &oldList.values[n};

while (n--) *--newPtr = +--oldPtr;

return «this;

Example 12. C++ program sample from a ﬁ;viit(vnamics
simulation system [E12: Hill, 1993].

SCOPE: WHAT DOES YOUR PROTOTYPE

PROTOTYPE?

Role

Why are the types of
prototypes corners of a
triangle? What does this
mean for scoping your
prototypes?

Integration

Implementation

Look and feel

From Houde and Hill - What do Prototypes Prototype?

Prototyping Programming Tools
Why prototype?

o Full Implementations take along
amount of time

o Atleastinresearch, development
teams are only 1 or 2 people

e Solutions need to merge Into
workspaces that are already complex

Role Prototypes

After expanding the code some more, it should let me substitute in realistic input values. These could be captured from the runtime data
of my program. Or maybe they're inferred from typical values an API is called with, mined from open source code online.

try:
input_ = InputStream(selectar)

lexer = CssLexer(input_) C
token_stream = CommonTok C;n
1 parser = CssParser(token Oopy
Narratlve if hasattr(parser, 'sele{ Paste
1 parse_tree = getattr p')()
scenarios else: Fold / Unfold | ‘
raise KeyError("Main| gubstitute value = | w, 1., , rule_name)
walker = ParseTreeWalker| ,,g"." a‘ffh £
walker.walk(explainer, pavee—wrwwr / "t;k\;l[Z"— Sl

Now ['ve still got some try-catch blocks and if-else statements to remove. When | remove these, | want to make sure the code still runs
fine. Others should be able to copy, paste, and run this code, without bugs I've accidentally introduced. So there should be an output

pane like this:

try:
input_ = InputStream("p.klazz")
lexer = CssLexer(input_)
token_stream = CommonTokenStream(lexer)
parser = CssParser(token_stream)
if hasattr(parser, 'selectors_group'):
parse_tree = getattr(parser, 'selectors_group')()
else:

Look-and-Feel Prototypes

© ¢ 0 explain.py - tutorons-server - [~/Downlocads/tutorons-server]
tutorons-server tutorons css & CXplaInDYy
[Proect v O - S b & explanpy »
tutorons-server
geps
gocs
launch
parsers
tutorons logging.basicConfig(level=logging. INFO, format="\(message)s

ARpore

common

O
w
Y

def explainiselector):

& __init__.py explainer = CssCxplainer
detect try:

- p——_— parse_tree = parse_plaintextiselector, Cssiexer, CssParser, "selectors_grouwp

examples.py walk_treciparse_tree, explainer)

» explain.py . . : =

» flleext.py | a a :
IDE & render.oy You might have found something cool. No one online

1ags.py

..

knows about this pattern. Want to share it?
mockups i

e | think it will take about 10 edits. | start Editing

regex

settings S

static

templates

tests

waet _key = Llambde Cix: Cix, invokingState

& __Init__.py

»UriS.pY def explain attribute(attribute node)
A VIews.py
A WSQlL.py CQUALITY SYMBOLS =

Csslexer,. PREFIXMATON,

® .gitignore Csslexer SUFFIXMATON,

P .gitmodules Csslexer. SUBSTRINGMATON,
& manage.py Csslexer.CQUALS,
4 README md Csslexer. INCLUDCS,

Csslexer.DASHMATCON,
§ rundevserver |

i External Libranes

CQUALITY SYMBOL _VERES = {
Csslexer . PREFINMATOM: "start with
Csslexer SUFFIXMATON: "end with',
Csslexer. SUBSTRINGMATOM contain’,
Csslexer.CQUALS: "egqual’,
Csslexer. INCLUDES: "include’,
Csslexer .DASHMMATCH: ‘start with

Implementation Prototypes

Assignment /7 - Program Slicing

Submission details: Please submit a .py file. Submit via GradeScope. If you have questions

on this process, get in touch via the Slack or via email.
Due: 10/19/20

In class, we worked with a program that generates a control flow graph (CFG) for a limited
subset of Python. For this assignment, transform that program into a program slicer.

Required: handle straight-line programs
Strongly encouraged: handle the if then statements we added during class

Extra super awesome: handle loops

Please support this usage:
python program slicing.py filename line number variable name

FORMATIVE USER RESEARCH

Method

Contextual
inquiry

Exploratory lab
studies

Surveys

Data mining
(including
corpus studies
and log
analysis)

Tool development activities supported

Requirements and problem analysis

Requirements and problem analysis

» Requirements and problem analysis
» Evaluation and testing

» Requirements and problem analysis
» Evaluation and testing

Myers, Ko,

So many methods!

Key benefits

» Experimenters gain insight into day-to-
day activities and challenges.

» Experimenters gain high-quality data
on the developer’s intent.

» Focusing on the activity of interest s
easier.

» Experimenters can compare
participants doing the same tasks.

» Experimenters gain data on the
developer's intent.

» Surveys provide quantitative data.
» There are many participants.
» Surveys are (relatively) fast.

» Data mining provides large quantities
of data.

» Experimenters can see patterns that
emerge only with large corpuses.

Natural-
programming
elicitation

Rapid
prototyping

Heuristic
evaluations

Cognitive
walkthroughs

Think-aloud
usability
evaluations

A/B testing

aloza, and Yoon"

Centered Methods for Imp

» Requirements and problem analysis
» Design

Design

» Requirements and problem analysis
» Design
» Evaluation and testing

» Design
» Evaluation and testing

» Requirements and problem analysis
» Design
» Evaluation and testing

Evaluation and testing

Experimenters gain insight into
developer expectations.

Experimenters can gather feedback at
low cost before committing to high-cost

development.

» Evaluations are fast.
» They do not require participants.

» Walkthroughs are fast.
» They do not require participants.

Evaluations reveal usability problems and
the developer's intent.

» Testing provides direct evidence
that a new tool or technique benefits

developers.
» It provides objective numbers.

rogrammers Are Users [oo: Human-

roving Programming Tools." Computer.

When to use a desigh method

| need to understand | need to evaluate
the problem the solution

actionable
design insight

fast to plan fast to plan
and run and run

When to use a desigh method

| need to understand | need to evaluate
the problem the solution

actionable
design insight

content
analyses

fast to plan fast to plan
and run and run

When to use a desigh method

| need to understand | need to evaluate
the problem the solution

actionable
design insight
surveys
content
analyses

fast to plan fast to plan
and run and run

When to use a desigh method

| need to understand | need to evaluate
the problem the solution

actionable Interviews
design insight
surveys
content
analyses

fast to plan fast to plan
and run and run

When to use a desigh method

| need to understand | need to evaluate
the problem the solution

observations with
existing tools

actionable Interviews
design insight
surveys
content
analyses

fast to plan fast to plan
and run and run

When to use a desigh method

| need to understand | need to evaluate
the problem the solution

observations with
existing tools

actionable Interviews
design insight
surveys
content
analyses experiments

fast to plan fast to plan
and run and run

actionable
design insight

When to use a desigh method

| need to understand
the problem

observations with
existing tools

Interviews

surveys

content
analyses

fast to plan
and run

| need to evaluate
the solution

observations with
your tool

experiments

fast to plan
and run

When to use a desigh method

| need to understand | need to evaluate
the problem the solution
observations with design critique

existing tools prototyping

actionable Interviews observations with
design insight your tool
surveys
content
analyses experiments

fast to plan fast to plan
and run and run

When to use a desigh method

| need to understand | need to evaluate
the problem the solution
observations with design critique
existing tools prototyping
actionable Interviews observations with
design insight your tool
surveys
content

analyses experiments

fast to plan fast to plan
and run and run

Understanding Problems in a Time Crunch: Observations

Answers the questions,
(1) "Did | pick an actual problem?"

(2) "What issues can a tool help fix?"

designed
thing

user

designed
thing

facilitator user

greets user, gives tutorial,
asks and answers questions

designed
thing

SO oo

facilitator user

observer

takes focused, complete notes

Yoda

(your user/participant)

Highly recommend the expert-apprentice relationship model for
contextual inquiry.
Don’t typically recommend offering piggyback rides as part of it.

=) N

FORMATIVE STUDY

We conducted a formative study to understand the process that
programmers follow when creating executable code examples
from their own code, and the obstacles they encounter along
the way. We observed 12 programmers as they created exam-
ple code. Participants were recruited from our professional
networks, local MeetUps, and computer science researchers
from a local university.

This study and a review of literature on code examples led to
design recommendations for improving the user experience of
extracting code examples from existing code (Figure 2). We
refer the reader to Section Al of the auxiliary material for
protocol details and observations from the formative study.

Authors made examples by...

Copying the original code and
pasting into example editor

Tools should help authors...

Create examples from text
selections

Add lines from original code at
any time

Replacing variables with
meaningful literal values

Review and insert literal values
that preserve program behavior

Tweaking comments and code
format for readability

Making examples could be
time-consuming because...

Directly edit code to add
comments, group lines, and add
print statements

Better tools could...

Authors left out code

Suggest lines of code that the
current example needs to run
Add missing code automatically
when it's the only sensible fix

Authors introduced errors via
transcription or edits

Constrain manual code edits
Enable early and frequent testing

It took time to remove
irrelevant code

Start from a blank file
Omit code except for explicit code
selections and necessary fixes

FORMATIVE STUDY

We conducted a formative study to understand the process that
programmers follow when creating executable code examples
from their own code, and the obstacles they encounter along
the way. We observed 12 programmers as they created exam-
ple code. Participants were recruited from our professional
networks, local MeetUps, and computer science researchers
from a local university.

This study and a review of literature on code examples led to
design recommendations for improving the user experience of
extracting code examples from existing code (Figure 2). We
refer the reader to Section Al of the auxiliary material for
protocol details and observations from the formative study.

Authors made examples by...

Copying the original code and
pasting into example editor

Tools should help authors...

Create examples from text
selections

Add lines from original code at
any time

Replacing variables with
meaningful literal values

Review and insert literal values
that preserve program behavior

Tweaking comments and code
format for readability

Making examples could be
time-consuming because...

Directly edit code to add
comments, group lines, and add
print statements

Better tools could...

Authors left out code

Suggest lines of code that the
current example needs to run
Add missing code automatically
when it's the only sensible fix

Authors introduced errors via
transcription or edits

Constrain manual code edits
Enable early and frequent testing

It took time to remove
irrelevant code

Start from a blank file
Omit code except for explicit code
selections and necessary fixes

Untitled.py —

n 3 (=] [4]
Language Kun Settings...

Untitied. py

viaws v

e — A ————————. e ———————. e ——————— e ——————— T Je=l 1IN
. - - l“- .
- ,
N : N f. . I‘ 2 ¥ W L

Example Editor = —~

unutiea.sy — ™

n3
Language

Unlitle

viaws v

Untitled.py —

Language - '-":-'-. {un Settings... SOU rce PrOg ra m

Unltitie

n3

viaws v

3 (=]
Language Stop Kun Settings...

Unlitle

Testing Environment

LIS ITER

Browser

Untitled.py —
n3
Language

Unlitle

viaws v

Untitled.py —

n 3 (=] [4]
Language Kun Settings...

Untitied. py

viaws v

—_— e - - —— —_—
..........

-4
== =7

- a5 s 7

.

\

Transcription errors =

Untitled.py —
n3

Language

Unltitie

viaws v

Edit errors

Untitled.py —

n3
Language

Unltitie

viaws v

—_— e —_—— —_—— —— —_—

Forgotten code

Edit errors

Transcription errors """

Untitled.py —

n 3 (m] [£

Language stop Kun Settings...

Untitied. py
views

—_— e —_—— —_—— —— —
........

I | _,.-.
- -
—

x %) X X
Q
Transcription errors "

Forgotten code

Untitled.py — = v

n 3 o) (> [=]

Language Run Stop

Untitied.py

viaws v

ANDREW'S MAXIMUM-FUN,
MINIMUM-REGRET OBSERVATION TIPS

1. Keep It focused

1. Make your research questions before the study.

terate. Keep the good ones.

2. Help users understand what feedback is
actionable to you—and what's not

a. Set the parameters of the conversation early
b. Provide on-going guidance

ANDREW'S MAXIMUM-FUN,
MINIMUM-REGRET OBSERVATION TIPS

2. Plan your notes for fast analysis

1. Take notes and record the conversation

2. Structure your notes document to make
analysis easy and fast

3. Start synthesizing right after the study

Benefits and Challenges of Mixed-Initiative

TARGETED NOTES

When Guide Rails Are Helpful

Directing Focus to What Work Still Had to

A | A section for each
e Participants gengrally repo.rt-efj that |t. was helpful t .
and get suggestions of definitions to include (e.g., r e S e a r Ch q u e st I o n

e “[the features this participant marked as most impc
task of making an example that worked rather than (k b .I: d)
of which variables | needed to declare, etc.” (NO7) m a e e O re Stu y
Making Quick Work of Otherwise Tedious Trial and Error

e The value of small, automatic fixes interpretation

evidence
(quotes,

o “although not necessarily hard to do, [all of the other featL . .
/ example a lot easier because | just had to look at the rele; (a d d N réa ‘ tl M e)

. o “Itfills in a lot of things that people usually don’t really think about (exceptions,
observation S, variables/constants) and saves a lot of time spent just searching and

needed it or not instead of having to manually add them ir
. . copy/pasting.” (N0O4)
add in real time)

ved me the trouble of having to go through and find things like
eclared variables, missing import statements, and unchecked exceptions,

which prevented my Sierra code from compiling.” (N05)

use r I Ds e Some of the many small fixes CodeScoop made automatically, but that participants had
to do manually in the baseline

ANDREW'S MAXIMUM-FUN,
MINIMUM-REGRET OBSERVATION TIPS

3. Develop rapport with users

1. There's always time for a bit of small talk
a. Make them teel comfortable

b. Make them feel appreciated (they're
doing you a huge favorl)

c. Make them want to help again

Understanding Solutions in a Time Crunch: Critiques

Answers the questions,
(1) "Does this solve the problem?"

(2) "Is this something that users (and
my peers) will get excited about?

T
oL

e - //v praee
sareen -

—on e N
’:“ A oS S
,;}‘ E,_;-u. C"“A l
< 3
s P 5N !
. o | =% V\“"\».\
PO o oy 0n| WA~
=35
e !
/ ’—‘/
R — A b :
3 L) A" g b sbitd |
2 sotitgaron DIF L& A sEa
»=L oy WP e~ ;
7 s =l B
< ey ot ~90'F
Ln @B s Bl
- :
m g |y OgevT—s Nre* b oo |
e T R T 23
8, et P = e 3%
RIS @] 9
- ® oy

5 | wwye

L

Al T |=b | .

< | A |

e \ forerest | -
“ ¥ 55 ._ .
uy 55 we sg e | @

B -
5 godo

ZHIYUE DIVG
Currers ston

Y
Wryed #.23 ZHIYVZ

NEATHER REPORT
MA N/

Sy -

e
C S sl D)

s
terot o

s 22

. ci?
SATNEATAT S o |

LE X3t = ME
" S Rabee

) Ao

| vt By
[PORSS—, "

| prrreret—rreeiQ)

ey

L]
P it et s eni

SIS

e treser—rri(T)

DIHTENOARD, ‘\1

{

Jasgulsg L‘u<-§

)
Jurneg 2% 205
@A STormM CHASER
PRojECT L

\
e 1

cmEn] THE; 16 ospm}

hom
s fare
o
on
o
S
EDC-." i prse
P | A TATUMBO Y 5 | l
1."'__“4 | a%e \"30 i
#| | _,,'——————J;:
A | wawAlr L s
| 34| 23 S0 1)
! _/7 C oA e |
e ‘
| \“ 7} |
| /2

N

NN

i
|
i
|

e

STEURC INFG oF
wHAT usER mlGHT
WANT T o ABoLT

o G

L

Toded
wn e

Cedgrend, =y L
THE STeR M / AZEA svw;u”"“ T

A o stems
(=

Getting Feedback on Programming
Tools Before They're Built

o (et feedback from multiple users

o (et feedback from multiple tool builders
e Present multiple ideas, not just one

e Come up with concrete worked examples
e Beopen tonew ideas

1. Get Feedback from Multiple Users

rogrammers

one way o

- |00

nave C

KINg a

Cdifferences in work styles.

"Opportunistic programmers are more concerned with
productivity than control or understanding.

verse work styles and preferences. Here's

o "Pragmatic programmers balance productivity with control
and understanding.’

o "Systematic programmers program defens

vely and these are

the programmers for whom low-level APls are targeted.

From Clarke, "Measuring APl Usability", Dr. Dobb's
Flaborated on in Stylos and Clarke, "Usability Implica

‘lons of Requiring

Parameters in Objects’ Const

ructors” |[CSE 'O/

1. Get Feedback from Multiple Users

Abby Pat

Support ALL TYPES of users and their Cognitive Styles’

Motivations

People have different motivations for using technology:

« Abby uses technology only as needed for his/her task. S/he prefers familiar
features to keep focused on the task.

» Tim likes using technology to learn what new features can help him/her accomplish.
» Pat is like Abby in some situations and like Tim in others.

Make clear what a new feature does, and why someone would use it, but also
keep familiar features available.

GenderMag personas, gendermag.org

http://gendermag.org

2. Get Feedback from Tool Builders

"When artists assessed one another's performances, they
were apout twice as accurate as managers and test
audiences In predicting how often the videos would be
shared. Compared to creators, managers and test audiences
were 56 percent and 55 percent more prone to major false
negatives, undervaluing a strong, novel performance by five
ranks or more in the set of ten they viewed.”

From Adam Grant, Originals, regarding Justin Berg's publication, "Balancing on the
Creative Highwire: Forecasting the Success of Novel |[deas in Organizations”

3. Present Multiple Ideas, Not Just One

o (Critics are more willing to give
supbstantive feedback when there are
several iIdeas In play

e Designs that evolve from parallel
prototypes (rather than sequential
prototypes)

Getting the Right Design and the Design Right:
Testing Many Is Better Than One

Maryam Tohidi William Buxton Ronald Baecker Abigail Sellen
University of Toronto Microsoft Research University of Toronto Microsoft Research
Toronto, Canada Toronto, Canada Toronto, Canada Cambridge, UK

mtohidi@dgp.toronto.edu bill@billbuxton.com rmb@kmdi.utoronto.ca asellen@microsoft.com

ABSTRACT

We present a study comparing usability testing of a single
interface versus three functionally equivalent but
stylistically distinct designs. We found that when presented
with a single design, users give significantly higher ratings
and were more reluctant to criticize than when presented
with the same design in a group of three. Our results imply
that by presenting users with alternative design solutions,
subjective ratings are less prone to inflation and give rise to
more and stronger criticisms when appropriate. Contrary to
our expectations, our results also suggest that usability
testing by itself, even when multiple designs are presented,
is not an effective vehicle for soliciting constructive
suggestions about how to improve the design from end
users. It 1s a means to identify problems, not provide
solutions.

1 Summer W ,-lsi’\--'-""“\f-fs
(w0t » 2005)
Figure 1. The “Circular” paper prototype
f’ro%rnm _Summer_on Vacation [y
g »
L [s 1 2 e
Mornng [7ie0 Tv) [%00 1| & [v
Day e vl &7 19 T 19
E\efﬁn% (o0 Jv] [tz v [_1s Ivl
Night Liz:@ Jv) [T 91 (15 I+l
Date Tine e pargoey,
EHEUER¢ [RH[2H [=H KL

Figure 2. The “Tabular” paper prototype

Parallel Prototyping Leads to Better
Design Results, More Divergence,
and Increased Self-Efficacy

STEVEN P. DOW, ALANA GLASSCO, JONATHAN KASS, MELISSA SCHWAR/Z,

DANIEL L. SCHWARTZ, and SCOTT R. KLEMMER
Stanford University

Iteration can help people improve ideas. It can also give rise to fixation, continuously refining one
option without considering others. Does creating and receiving feedback on multiple prototypes
in parallel, as opposed to serially, affect learning, self-efficacy, and design exploration? An experi-
ment manipulated whether independent novice designers created graphic Web advertisements in

parallel or in series. Serial participants received descriptive critique directly ai
Parallel participants created multiple prototypes before receiving feedback. As

ter each prototype.
measured by click-

through data and expert ratings, ads created in the Parallel condition significantly outperformed
those from the Serial condition. Moreover, independent raters found Parallel prototypes to be more
diverse. Parallel participants also reported a larger increase in task-specific self-confidence. This

article outlines a theoretical foundation for why parallel prototyping produces b
and discusses the implications for design education.

etter design results

Categories and Subject Descriptors: H.1.m. [Information Systems]: Models and Principles

General Terms: Experimentation, Design

Fig. 1. The experiment manipulates when participants receive feedback during a design process:
in serial after each design (top) versus in parallel on three, then two (bottom).

4. Come up with concrete worked examples

Implementation

‘Integration

Role

Look and feel

Worked examples, or
scenarios of tool usage
showing real programs.

These let you
simultaneously to start
testing the functionality
and fit of your idea while
thinking about
iImplementation feasibility.

WIZARD OF OZ STUDY

computer / "wizard"

updates the prototype in

. Fesponse to user actions
prototyped thing

facilitator user
observer

Why is it called
"Wizard-ot-Oz"?

- . The illusion looks real...

Why is it called
"Wizard-ot-Oz"?

The illusion looks real...
I

... but it's just a person controlling it.

A Discount ldea Evaluation Method

e Make adeck of slides

e (reate ademo walkthrough of your 3 most
exclting tool iIdeas

e [heyshow real programs, real text

e [heycomewith aproblem description, solution
description, and resolution

e Show thisto 3 users, 3tool builders. Ask them
what they find most exciting and why.

public class ControlFlowTest extends LightCodeInsightTestCase {
@NonN1s 3. ChOp
private static final String BASE_PATH = "testData/psi/controlFlow";
private static void doTestFor(final File file) throws Exception {
String contents = StringUtil.convertLineSeparators(FileUtil.loadFile(file));
configureFromFileText(file.getName(), contents);
// extract factory policy class name
Pattern pattern = Pattern.compile("~// (\\S*).*", Pattern.DOTALL);
Matcher matcher = pattern.matcher(contents);
assertTrue(matcher.matches());
final String policyClassName = matcher.group(1);
final ControlFlowPolicy policy;
if ("LocalsOrMyInstanceFieldsControlFlowPolicy".equals(policyClassName)) {
policy = LocalsOrMyInstanceFieldsControlFlowPolicy.getInstance();

} else {
policy = null;
}

final int offset = getEditor().getCaretModel().getOffset();

PsiElement element = getFile().findElementAt(offset);

element = PsiTreeUtil.getParentOfType(element, PsiCodeBlock.class, false);
assertTrue("Selected element: " + element, element instanceof PsiCodeBlock);

ControlFlow controlFlow = ControlFlowFactory.getInstance(getProject()).getControlFlow(element, policy);
String result = controlFlow.toString().trim();

final String expectedFullPath = StringUtil.trimEnd(file.getPath(), ".java") + ".txt";
VirtualFile expectedFile = LocalFileSystem.getInstance().findFileByPath(expectedFullPath);
String expected = LoadTextUtil.loadText(expectedFile).toString().trim();

expected = expected.replaceAll("\r", "");

assertEquals("Text mismatch (in file " + expectedFullPath + "):\n", expected, result);

}

// Not sure why this is failing on some simple tests (like flow3). It looks like the branching, reading, and
[/ writing structure is correctly captured. So maybe we should just update the test output.
private static void doAllTests() throws Exception {
final String testDirPath = BASE_PATH;
File testDir = new File(testDirPath);
final File[] files = testDir.listFiles((dir, name) -> name.endsWith(".java"));
for (int 1 = 0; 1 < files.length; i1++) {
File file = files[i];
doTestFor(file);

System.out.print((i + 1) + " ");

public class ControlFlowTest extends LightCodeInsightTestCase {
@NonN1s 3. ChOp
private static final String BASE_PATH = "testData/psi/controlFlow";
private static void doTestFor(final File file) throws Exception {
String contents = StringUtil.convertLineSeparators(FileUtil.loadFile(file));
configureFromFileText(file.getName(), contents);
// extract factory policy class name
Pattern pattern = Pattern.compile("~// (\\S*).*", Pattern.DOTALL);
Matcher matcher = pattern.matcher(contents);
assertTrue(matcher.matches());
final String policyClassName = matcher.group(1);
final ControlFlowPolicy policy;
if ("LocalsOrMyInstanceFieldsControlFlowPolicy".equals(policyClassName)) {
policy = LocalsOrMyInstanceFieldsControlFlowPolicy.getInstance();

} else {
policy = null;
}

final int offset = getEditor().getCaretModel().getOffset();

PsiElement element = getFile().findElementAt(offset);

element = PsiTreeUtil.getParentOfType(element, PsiCodeBlock.class, false);
assertTrue("Selected element: " + element, element instanceof PsiCodeBlock);

ControlFlow controlFlow = ControlFlowFactory.getInstance(getProject()).getControlFlow(element, policy);
- U 0

String res ow.toString().trim();

final String expectedFullPath = StringUtil.trimEnd(file.getPath(), ".java") + ".txt";
VirtualFile expectedFile = LocalFileSystem.getInstance().findFileByPath(expectedFullPath);
String expected = LoadTextUtil.loadText(expectedFile).toString().trim();

expected = expected.replaceAll("\r", "");

assertEquals("Text mismatch (in file " + expectedFullPath + "):\n", expected, result);

}

// Not sure why this is failing on some simple tests (like flow3). It looks like the branching, reading, and
[/ writing structure is correctly captured. So maybe we should just update the test output.
private static void doAllTests() throws Exception {
final String testDirPath = BASE_PATH;
File testDir = new File(testDirPath);
final File[] files = testDir.listFiles((dir, name) -> name.endsWith(".java"));
for (int 1 = 0; 1 < files.length; i1++) {
File file = files[i];
doTestFor(file);

System.out.print((i + 1) + " ");

public class ControlFlowTest extends LightCodeInsightTestCase {
@NonN1s 3. ChOp
private static final String BASE_PATH = "testData/psi/controlFlow";
private static void doTestFor(final File file) throws Exception {
String contents = StringUtil.convertLineSeparators(FileUtil.loadFile(file));
configureFromFileText(file.getName(), contents);
// extract factory policy class name
Pattern pattern = Pattern.compile("2// (\\S*).*", Pattern.DOTALL);
Matcher matcher = pattern.matcher(contents);
assertTrue(matcher.matches());
final String policyClassName = matcher.group(1);
final ControlFlowPolicy policy;
if ("LocalsOrMyInstanceFieldsControlFlowPolicy".equals(policyClassName)) {
policy = LocalsOrMyInstanceFieldsControlFlowPolicy.getInstance();

} else {
policy = null;
}

final int offset = getEditor().getCaretModel().getOffset();

PsiElement element = getFile().findElementAt(offset);

element = PsiTreeUtil.getParentOfType(element, PsiCodeBlock.class, false);
assertTrue("Selected element: " + element, element instanceof PsiCodeBlock);

ControlFlow controlFlow = ControlFlowFactory.getInstance(getProject()).getControlFlow(element, policy);
- U 0

String res ow.toString().trim();

final String expectedFullPath = StringUtil.trimEnd(file.getPath(), ".java") + ".txt";
VirtualFile expectedFile = LocalFileSystem.getInstance().findFileByPath(expectedFullPath);
String expected = LoadTextUtil.loadText(expectedFile).toString().trim();

expected = expected.replaceAll("\r", "");

assertEquals("Text mismatch (in file " + expectedFullPath + "):\n", expected, result);

}

// Not sure why this is failing on some simple tests (like flow3). It looks like the branching, reading, and
[/ writing structure is correctly captured. So maybe we should just update the test output.
private static void doAllTests() throws Exception {
final String testDirPath = BASE_PATH;
File testDir = new File(testDirPath);
final File[] files = testDir.listFiles((dir, name) -> name.endsWith(".java"));
for (int 1 = 0; 1 < files.length; i1++) {
File file = files[i];
doTestFor(file);

System.out.print((i + 1) + " ");

public class ControlFlowTest extends LightCodeInsightTestCase {
@NonN1s 3. ChOp
private static final String BASE_PATH = "testData/psi/controlFlow";
private static void doTestFor(final File file) throws Exception {
String contents = StringUtil.convertLineSeparators(FileUtil.loadFile(file));
configureFromFileText(file.getName(), contents);
// extract factory policy class name
Pattern pattern = Pattern.compile("2// (\\S*).*", Pattern.DOTALL);
Matcher matcher = pattern.matcher(contents);
assertTrue(matcher.matches());
final String policyClassName = matcher.group(1);
final ControlFlowPolicy policy;

U et OrMyInstanceFieldsControlFlowPolicy".equals(policyClassName)) {
LocalsOrMyInstanceFieldsControlFlowPolicy.getInstance();

null;

final int offset = getEditor().getCaretModel().getOffset();

PsiElement element = getFile().findElementAt(offset);

element = PsiTreeUtil.getParentOfType(element, PsiCodeBlock.class, false);
assertTrue("Selected element: " + element, element instanceof PsiCodeBlock);

ControlFlow controlFlow = ControlFlowFactory.getInstance(getProject()).getControlFlow(element, policy);
- U 0

String res ow.toString().trim();

final String expectedFullPath = StringUtil.trimEnd(file.getPath(), ".java") + ".txt";
VirtualFile expectedFile = LocalFileSystem.getInstance().findFileByPath(expectedFullPath);
String expected = LoadTextUtil.loadText(expectedFile).toString().trim();

expected = expected.replaceAll("\r", "");

assertEquals("Text mismatch (in file " + expectedFullPath + "):\n", expected, result);

}

// Not sure why this is failing on some simple tests (like flow3). It looks like the branching, reading, and
[/ writing structure is correctly captured. So maybe we should just update the test output.
private static void doAllTests() throws Exception {
final String testDirPath = BASE_PATH;
File testDir = new File(testDirPath);
final File[] files = testDir.listFiles((dir, name) -> name.endsWith(".java"));
for (int 1 = 0; 1 < files.length; i1++) {
File file = files[i];
doTestFor(file);

System.out.print((i + 1) + " ");

public class ControlFlowTest extends LightCodeInsightTestCase {
@NonN1s 3. ChOp
private static final String BASE_PATH = "testData/psi/controlFlow";
private static void doTestFor(final File file) throws Exception {
String contents = StringUtil.convertLineSeparators(FileUtil.loadFile(file));
configureFromFileText(file.getName(), contents);
// extract factory policy class name
Pattern pattern = Pattern.compile("~// (\\S*).*", Pattern.DOTALL);
Matcher matcher = pattern.matcher(contents);
assertTrue(matcher.matches());
final String policyClassName = matcher.group(1);
final ControlFlowPolicy policy;

1f (=he OrMyInstanceFieldsControlFlowPolicy".equals(policyClassName)) {
LocalsOrMyInstanceFieldsControlFlowPolicy.getInstance();

null;

final int offset = getEditor().getCaretModel().getOffset();

PsiElement element = getFile().findElementAt(offset);

element = PsiTreeUtil.getParentOfType(element, PsiCodeBlock.class, false);
assertTrue("Selected element: " + element, element instanceof PsiCodeBlock);

ControlFlow controlFlow = ControlFlowFactory.getInstance(getProject()).getControlFlow(element, policy);
- U 0

String res ow.toString().trim();

final String expectedFullPath = StringUtil.trimEnd(file.getPath(), ".java") + ".txt";
VirtualFile expectedFile = LocalFileSystem.getInstance().findFileByPath(expectedFullPath);
String expected = LoadTextUtil.loadText(expectedFile).toString().trim();

expected = expected.replaceAll("\r", "");

assertEquals("Text mismatch (in file " + expectedFullPath + "):\n", expected, result);

}

// Not sure why this is failing on some simple tests (like flow3). It looks like the branching, reading, and
[/ writing structure is correctly captured. So maybe we should just update the test output.
private static void doAllTests() throws Exception {
final String testDirPath = BASE_PATH;
File testDir = new File(testDirPath);
final File[] files = testDir.listFiles((dir, name) -> name.endsWith(".java"));
for (int 1 = 0; 1 < files.length; i1++) {
File file = files[i];
doTestFor(file);

System.out.print((i + 1) + " ");

public class ControlFlowTest extends LightCodeInsightTestCase {
@NonN1s 3. ChOp
private static final String BASE_PATH = "testData/psi/controlFlow";
private static void doTestFor(final File file) throws Exception {
String contents = StringUtil.convertLineSeparators(FileUtil.loadFile(file));
configureFromFileText(file.getName(), contents);
// extract factory policy class name
Pattern pattern = Pattern.compile("~// (\\S*).*", Pattern.DOTALL);
Matcher matcher = pattern.matcher(contents);
assertTrue(matcher.matches());

final String policyClassName = matcher.group(1);
final ControlFlowPolicy policy;

1f (=ke OrMyInstanceFieldsControlFlowPolicy".equals(policyClassName)) {
= LocalsOrMyInstanceFieldsControlFlowPolicy.getInstance();
} el(se

policy = null;

}

final int offset = getEditor().getCaretModel().getOffset();

DsiElament element = getFile().findElementAt(offset);

= PsiTreeUtil.getParentOfType(element, PsiCodeBlock.class, false);
Lue("Selected element: " + element, element instanceof PsiCodeBlock);

Control™ow controlFlow = ControlFlowFactory.getInstance(getProject()).getControlFlow(element, policy);
- U 0

String res ow.toString().trim();

final String expectedFullPath = StringUtil.trimEnd(file.getPath(), ".java") + ".txt";
VirtualFile expectedFile = LocalFileSystem.getInstance().findFileByPath(expectedFullPath);
String expected = LoadTextUtil.loadText(expectedFile).toString().trim();

expected = expected.replaceAll("\r", "");

assertEquals("Text mismatch (in file " + expectedFullPath + "):\n", expected, result);

}

// Not sure why this is failing on some simple tests (like flow3). It looks like the branching, reading, and
[/ writing structure is correctly captured. So maybe we should just update the test output.
private static void doAllTests() throws Exception {
final String testDirPath = BASE_PATH;
File testDir = new File(testDirPath);
final File[] files = testDir.listFiles((dir, name) -> name.endsWith(".java"));
for (int 1 = 0; 1 < files.length; i1++) {
File file = files[i];
doTestFor(file);

System.out.print((i + 1) + " ");

public class ControlFlowTest extends LightCodeInsightTestCase {
@NonN1s 3. ChOp
private static final String BASE_PATH = "testData/psi/controlFlow";
private static void doTestFor(final File file) throws Exception {
String contents = StringUtil.convertLineSeparators(FileUtil.loadFile(file));
configureFromFileText(file.getName(), contents);
// extract factory policy class name
Pattern pattern = Pattern.compile("~// (\\S*).*", Pattern.DOTALL);
Matcher matcher = pattern.matcher(contents);
assertTrue(matcher.matches());

final String policyClassName = matcher.group(1);
final ControlFlowPolicy policy;

1f (=ke OrMyInstanceFieldsControlFlowPolicy".equals(policyClassName)) {
= LocalsOrMyInstanceFieldsControlFlowPolicy.getInstance();
} el(se

policy = null;

}

final int offset = getEditor().getCaretModel().getOffset();

Dsiblament element = getFile().findElementAt(offset);

= PsiTreeUtil.getParentOfType(element, PsiCodeBlock.class, false);
Lue("Selected element: " + element, element instanceof PsiCodeBlock);

Control™ow controlFlow = ControlFlowFactory.getInstance(getProject()).getControlFlow(element, policy);
- U 0

String res ow.toString().trim();

final String expectedFullPath = StringUtil.trimEnd(file.getPath(), ".java") + ".txt";
VirtualFile expectedFile = LocalFileSystem.getInstance().findFileByPath(expectedFullPath);
String expected = LoadTextUtil.loadText(expectedFile).toString().trim();

expected = expected.replaceAll("\r", "");

assertEquals("Text mismatch (in file " + expectedFullPath + "):\n", expected, result);

}

// Not sure why this is failing on some simple tests (like flow3). It looks like the branching, reading, and
[/ writing structure is correctly captured. So maybe we should just update the test output.
private static void doAllTests() throws Exception {
final String testDirPath = BASE_PATH;
File testDir = new File(testDirPath);
final File[] files = testDir.listFiles((dir, name) -> name.endsWith(".java"));
for (int 1 = 0; 1 < files.length; i1++) {
File file = files[i];
doTestFor(file);

System.out.print((i + 1) + " ");

public class ControlFlowTest extends LightCodeInsightTestCase {
@NonNls
private static final String BASE_PATH = "testData/psi/controlFlow";

private static void doTestFor(final File file) throws Exception {

}

String contents = StringUtil.convertLineSeparators(FileUtil.loadFile(file));
configureFromFileText(file.getName(), contents);

// extract factory policy class name

Pattern pattern = Pattern.compile("~// (\\S*).*", Pattern.DOTALL);

Matcher matcher = pattern.matcher(contents);

assertTrue(matcher.matches());

final String policyClassName = matcher.group(1);

final ControlFlowPolicy policy;

1f (=ke OrMyInstanceFieldsControlFlowPolicy".equals(policyClassName)) {
= LocalsOrMyInstanceFieldsControlFlowPolicy.getInstance();
} el(se

policy = null;

}

final int offset = getEditor().getCaretModel().getOffset();

BPciFlament element = getFile().findElementAt(offset);
cloment e s e fa'[_se);

3. Chop

dSSET T U . reof PsiCodeBlock);

k Show input data for element:)
Control JetProject()).getControlFlow(element, policy);
String re

O type: CodeBlock

final Str Ve o . ptPath(), ".java") + ".txt";
virtualFi] O text: "{i1=1;1f (== 1) return true; }" [indFileByPath(expectedFullPath);
String ex ring().trim();

expected [] teXtOﬁSGt 52

assertiaul o firstChild: PsiElement — *7)AnT, expected, result);

// Not sure why this is failing on some simple tests (like flow3). It looks like the branching, reading, and
[/ writing structure is correctly captured. So maybe we should just update the test output.
private static void doAllTests() throws Exception {

final String testDirPath = BASE_PATH;
File testDir = new File(testDirPath);

final File[] files = testDir.listFiles((dir, name) -> name.endsWith(".java"));

for (int 1 = 0; 1 < files.length; i1++) {
File file = files[1];
doTestFor(file);

System.out.print((i + 1) + " ");

public class ControlFlowTest extends LightCodeInsightTestCase {
@NonNls
private static final String BASE_PATH = "testData/psi/controlFlow";

private static void doTestFor(final File file) throws Exception {

}

String contents = StringUtil.convertLineSeparators(FileUtil.loadFile(file));
configureFromFileText(file.getName(), contents);

// extract factory policy class name

Pattern pattern = Pattern.compile("~// (\\S*).*", Pattern.DOTALL);

Matcher matcher = pattern.matcher(contents);

assertTrue(matcher.matches());

final String policyClassName = matcher.group(1);

final ControlFlowPolicy policy;

1f (=ke OrMyInstanceFieldsControlFlowPolicy".equals(policyClassName)) {
= LocalsOrMyInstanceFieldsControlFlowPolicy.getInstance();
} el(se

policy = null;

}

final int offset = getEditor().getCaretModel().getOffset();
DciFlament element = getFile().findElementAt(offset);
element! =] 1 . k.class, false);

' eof Psi k);
Show input data for element: eof PsiCodeBlock)

asserciiru

3. Chop

ControlFl JetProject()).getControlFlow(element, policy);

String re

type: CodeBlock

final Str Ve e . ptPath(), ".java") + ".txt";
VirtualFi ext: "{1=1;if (== 1) return true; }" FindFileByPath(expectedFullPath);
String ex ring().trim();

expected [] teXtOﬁSGt 52

assertiaul o firstChild: PsiElement — *7)AnT, expected, result);

// Not sure why this is failing on some simple tests (like flow3). It looks like the branching, reading, and
[/ writing structure is correctly captured. So maybe we should just update the test output.
private static void doAllTests() throws Exception {

final String testDirPath = BASE_PATH;
File testDir = new File(testDirPath);

final File[] files = testDir.listFiles((dir, name) -> name.endsWith(".java"));

for (int 1 = 0; 1 < files.length; i1++) {
File file = files[1];
doTestFor(file);

System.out.print((i + 1) + " ");

public class ControlFlowTest extends LightCodeInsightTestCase {
@NonNls
private static final String BASE_PATH = "testData/psi/controlFlow";

private static void doTestFor(final File file) throws Exception {

}

String contents = StringUtil.convertLineSeparators(FileUtil.loadFile(file));
configureFromFileText(file.getName(), contents);

// extract factory policy class name

Pattern pattern = Pattern.compile("~// (\\S*).*", Pattern.DOTALL);

Matcher matcher = pattern.matcher(contents);

assertTrue(matcher.matches());

final String policyClassName = matcher.group(1);

final ControlFlowPolicy policy;

1f (=ke OrMyInstanceFieldsControlFlowPolicy".equals(policyClassName)) {
= LocalsOrMyInstanceFieldsControlFlowPolicy.getInstance();
} el(se

3. Chop

policy = null;
} type: CodeBlock
final int offset = getEditor().getCaretModel().getOffset(); text: { =1, Ii (l —=) return true; }
BPciFlament element = getFile().findElementAt(offset);
element| = PsiTreeUtil.getParentOfType(element, PsiCodeBlock.class, false);

assertirue("Selected element: + element, element instanceof PsiCodeBlock);

ControlFlow controlFlow ™Contrd— ' Y)).getControlFlow(element, policy);
String resutt = contr M tOStrlng()

final String expectedFullPath =| () ReadVariable i I'.java") + ".txt";

VirtualFile expectedFile = Local Path(expectedFullPath);

String expected = LoadTextUtil.l 1: ConditionalGoTo [END] 2 im();

expected = expected.replaceAll(]

assertEquals("Text mismatch (in| **° expected, result);

// Not sure why this is failing on some simple tests (like flow3). It looks like the branching, reading, and
[/ writing structure is correctly captured. So maybe we should just update the test output.
private static void doAllTests() throws Exception {

final String testDirPath = BASE_PATH;
File testDir = new File(testDirPath);

final File[] files = testDir.listFiles((dir, name) -> name.endsWith(".java"));

for (int 1 = 0; 1 < files.length; i1++) {
File file = files[1];
doTestFor(file);

System.out.print((i + 1) + " ");

public class ControlFlowTest extends LightCodeInsightTestCase {
@NonNls
private static final String BASE_PATH = "testData/psi/controlFlow";

private static void doTestFor(final File file) throws Exception {

}

String contents = StringUtil.convertLineSeparators(FileUtil.loadFile(file));
configureFromFileText(file.getName(), contents);

// extract factory policy class name

Pattern pattern = Pattern.compile("~// (\\S*).*", Pattern.DOTALL);

Matcher matcher = pattern.matcher(contents);

assertTrue(matcher.matches());

final String policyClassName = matcher.group(1);

final ControlFlowPolicy policy;

1f (=ke OrMyInstanceFieldsControlFlowPolicy".equals(policyClassName)) {
= LocalsOrMyInstanceFieldsControlFlowPolicy.getInstance();
} el(se

3. Chop
Make example

policy = null;
} type: CodeBlock
final int offset = getEditor().getCaretModel().getOffset(); text: { =1, Ii (l —=) return true; }
BPciFlament element = getFile().findElementAt(offset);
element| = PsiTreeUtil.getParentOfType(element, PsiCodeBlock.class, false);

assertirue("Selected element: + element, element instanceof PsiCodeBlock);

ControlFlow controlFlow =Contrd) — [)).getControlFlow(element, policy);
String resutlt = controu-m tOStrlng()

final String expectedFullPath =| () ReadVariable i I'.java") + ".txt";

VirtualFile expectedFile = Local Path(expectedFullPath);

String expected = LoadTextUtil.l 1: ConditionalGoTo [END] 2 im();

expected = expected.replaceAll(]

assertEquals("Text mismatch (in| **° expected, result);

// Not sure why this is failing on some simple tests (like flow3). It looks like the branching, reading, and
[/ writing structure is correctly captured. So maybe we should just update the test output.
private static void doAllTests() throws Exception {

final String testDirPath = BASE_PATH;
File testDir = new File(testDirPath);

final File[] files = testDir.listFiles((dir, name) -> name.endsWith(".java"));

for (int 1 = 0; 1 < files.length; i1++) {
File file = files[1];
doTestFor(file);

System.out.print((i + 1) + " ");

public class ControlFlowTest extends LightCodeInsightTestCase {
@NonNls
private static final String BASE_PATH = "testData/psi/controlFlow";

3. Chop (Informal

Everyday Sharing)

private static void doTestFor(final File file) throws Exception {
String contents = StringUtil.convertLineSeparators(FileUtil.loadFile(file));

configureFromFileText(file.getName(), contents);
// extract factory policy class name Make exa ple
Pattern pattern = Pattern.compile("~// (\\S*).*", Pattern.DOTALL);

Matcher matcher = pattern.matcher(contents);
assertTrue(matcher.matches());

final String policyClassName = matcher.group(1);
final ControlFlowPolicy policy;

1f Lelet OrMyInstanceFieldsControlFlowPolicy".equals(policyClassName)) {
= LocalsOrMyInstanceFieldsControlFlowPolicy.getInstance(); ReSU It
Input:

element = PsiElement(type=CodeBlock, text="{1 =1, 1f(i ==1)...")

Snippet:

final ControlFlowPolicy policy = LocalsOrMyInstanceFieldsControlFlowPolicy.getInstance(); .
ControlFlow controlFlow = ControlFlowFactory.getInstance(getProject()).getControlFlow(element, policy); y);
Output:

controlFlow.toString() = "
O: ReadVariable 1
} || 1: ConditionalGoTo [END] 2

// and
/I
Prbece=ceece—vvs vorrcoreocor 7 = erwe =respesor
final String testDirPath = BASE_PATH;
File testDir = new File(testDirPath);
final File[] files = testDir.listFiles((dir, name) -> name.endsWith(".java"));
for (int 1 = 0; 1 < files.length; i1++) {
File file = files[i];
doTestFor(file);

System.out.print((i + 1) + " ");

Objectives

e \What prototypes should | make to help
me find a good design?

e How should | collect feedback to
improve my design?

(If time)

Pick two of the ideas you've been
considering for your project?

Palr up. Make a pitch for these ideas to
vour partner. Find out which one most
excltes them.

