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Literature Review




Reading retlection

® \What did the two tools you saw in the demo videos have in
common?

® \When you figure out that a program you're debugging is
producing a wrong output, what's your next step?



The key common feature:

program slicing!

PROGRAM SLICING*

Mark Weiser

Computer Science Department
University of Maryland
College Park, MD 20742

Abstract

Program slicing 1s a method used by experienc-
ed computer programmers for abstracting from pro-
grams. Starting from a subset of a program's pe-
havior, slicing reduces that program to a minimal
form which still produces that behavior. The
reduced program, called a "slice”, is an indepen-
dent program guaranteed to faithfully represent
the original program within the domain of the
specified subset of behavior.

Finding a slice is in general unsolvable. A
dataflow algorithm is presented for approximating
slices when the behavior subset is specified as
the values of a set of variables at a statement.
Experimental evidence is presented that these
slices are used by programmers during debugging.
Experience with two automatic slicing tools is
summarized. New measures of program complexity
are suggested based on the organization ot a
program's slices.

KEYWORDS: debugging, program maintenance, soft-

ware tools, program metrics, human factors, data-
flow analysis

Introduction

A large computer program is more easily con-
structed, understood, and maintained when broken

s midta amaTT A ma A~ RS Catimwma 1 ds B anam o s il o a

behavior is of interest. For instance, during
debugging a subset of pehavior is being corrected,
and in program modification or maintenance a sub-
set of behavior is being improved or replaced. In
these cases, a programmer starts from the program
behavior and proceeds to find and modify the cor-
responaing portions of program code. Code not
having to do with behavior of interest is ignored.
Gould and Dronkowski {(19/4) report programmers
behaving this way during debugging, and a further
confirmng experiment is presented below.

A programmer maintaining a large, unfamiliar
program would almost have to use this behavior-
first approach to the code. Understanding an en-
tire system to change only a small piece would
take too much time. Since most program mainte-
nance 1s done by persons other than the program
designers, and since 67 percent of programming
effort goes into maintenance (Zelkowitz, Shaw,
and Gannon 1979), decomposing programs by behavior
must be a common occurence.

Automatic slicing requires that behavior be
specified in a certain form. If the behavior of
interest can be expressed as the values of some
sets of variables at some set of statements, then
this specification is said to be a slicing crite-
rion. Dataflow analysis (Hecht 1977) can tind all
the program code which might have infiuenced the
specified behavior, and this code is called a

Examples of Slices

The original program:
BEGIN
READ( X,Y)
TOTAL := 0.
SUM := 0.0
[F X<=1
THEN SUM := Y
ELSE BEGIN
READ(Z)
TOTAL := X*Y
10 END
11T WRITE(TOTAL,SUM)
12  END.

Slice on the value of Z at statement 12.
BEGIN
READ(X,Y)
IF X < 1]
THEN
ELSE READ(Z)
END.

Slice on the value of X at statement 9.
BEGIN
READ(X,Y)
END.

Slice on the value of TOTAL at statement 12.
BEGIN
READ(X,Y)
TOTAL := 0
[F X <=1
THEN
ELSE TOTAL := X*Y
END.
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O ONOYOYT B wnN —



sum = 0

prod = 1 prod = 1

=1 =1

while (i < 11) while (i < 11)

( | {

sum = sum —+ |
prod = prod * i prod = prod * i
=i+ 1 =i+ 1

) prod

The same example, but maybe a bit more familiar looking!

figure from Program Slicing, Keith Gallagher et al.



CARING

There was a request on the slack for folks to post screenshots of their newly
implemented constructs, if they're willing.

If you're comfortable sharing, please go ahead and post yours!






Betore we fully move on to
program slicing...

Let's look back at Thursday’s discussion a moment.



Thursaay discussion

® |t was awesome ;)

® So excited that everyone was so engaged in the
discussions (pboth in breakout rooms and whole-group) and
interested in the topics

® Great to hear so many perspectives

® .. .but there were some folk theories coming out! :)



Us vs. Them



Evidence That Computer Science Grades Are Not Bimodal
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ABSTRACT

Although it has never been rigourously demonstrated, there
is a common belief that CS grades are bimodal. We statisti-
cally analyzed 778 distributions of final course grades from
a large research university, and found only 5.8% of the dis-
tributions passed tests of multimodality. We then devised
a psychology experiment to understand why CS educators
believe their grades to be bimodal. We showed 53 CS pro-
fessors a series of histograms displaying ambiguous distri-
butions and asked them to categorize the distributions. A
random half of participants were primed to think about the
fact that CS grades are commonly thought to be bimodal;
these participants were more likely to label ambiguous dis-
tributions as “bimodal”. Participants were also more likely
to label distributions as bimodal if they believed that some
students are innately predisposed to do better at CS. These
results suggest that bimodal grades are instructional folklore
in CS, caused by confirmation bias and instructor beliefs
about their students.
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inform their practice [13], and these beliefs may or may not
be based on empirical evidence.

1.1 Explanations of Bimodality

A number of explanations have been presented for why CS
grades are bimodal, all of which begin with the assumption
that this is the case.

1.1.1 Prior Experience

A bimodal distribution generally indicates that two dis-
tinct populations have been sampled together [5]. One ex-
planation for bimodal grades is that CS1 classes have two
populations of students: those with experience, and those
without it [1].

High school CS is not common in many countries, and
so students enter university CS with a range of prior ex-
perience. However, this explanation fits students into two
bins. Prior experience is not as simple as “have it” vs. not —
there is a large range on how much prior experience students

can have programming, and practice with non-programming
languages like HTML /CSS could also be beneficial [21].



Although it has never been rigourously demonstrated, there
is a common belief that CS grades are bimodal. We statisti-

cally analyzed 778 distributions of final course grades from
a large research university, and found only 5.8% of the dis-
tributions passed tests of multimodality. We then devised
a psychology experiment to understand why CS educators
believe their grades to be bimodal. We showed 53 CS pro-
fessors a series of histograms displaying ambiguous distri-
butions and asked them to categorize the distributions. A

random half of participants were primed to think about the
fact that CS grades are commonly thought to be bimodal;

these participants were more likely to label ambiguous dis-
tributions as “bimodal”. Participants were also more likely
to label distributions as bimodal if they believed that some
students are innately predisposed to do better at CS. These
results suggest that bimodal grades are instructional folklore
in CS, caused by confirmation bias and instructor beliefs
about their students.



What stood out for us is that at both UBC and UToronto,
the CS faculty would routinely assert that their CS grades
are bimodal — and we now had evidence to the contrary.

Our results support Lister’s argument that CS grades are
generally not bimodal, and that the perception of bimodality
comes from instructors expecting their grades to be [17].



If you plan to spend any additional years in CS at all, | highly recommend reading the whole paper:
https://dl.acm.org/doi/10.1145/2960310.2960312

Here's a picture of a rainbow so you can find this slide and therefore this link later!
https://www.johnentwistlephotography.com/


https://dl.acm.org/doi/10.1145/2960310.2960312

Text- vs. Structure-Based Editors:
The lit review



Going to focus on the about the last 10 years of the literature,
since the editors available have changed a fair amount.
But we'll also take a look at a lit review that covers prior work.

https://abc7news.com/society/end-of-the-decade-googles-top-trends-of-the-2010s/5749300/



Goals for the upcoming flood of
data

® That we all leave recalling a few of the key insights that
have come up with repeatedly

® That we know we don’t have to rely on folk theories!
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environments to professional programming languages in high e |
school computer science classrooms
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ARTICLE INFO ABSTRACT

Keywords: Block-based programming languages are becoming increasingly common in introductory com-
Evaluation of CAL systems puter science classrooms across the K-12 spectrum. One justification for the use of block-based
Interactive learning environments environments in formal educational settings is the idea that the concepts and practices developed

Programming and programming languages
Secondary education
Teaching/learning strategies

using these introductory tools will prepare learners for future computer science learning op-
portunities. This view is built on the assumption that the attitudinal and conceptual learning
gains made while working in the introductory block-based environments will transfer to con-
ventional text-based programming languages. To test this hypothesis, this paper presents the
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Statistically significant
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Fig. 3. The mean scores for students in the two conditions on the three administrations (Pre, Mid, and Post) of the Commutative Assessment.

(63) = 2.03, p = 0.04, d = 0.58). This means that after 5 weeks, students learning to program in a block-based environment per-
formed significantly better on a content assessment than peers using an isomorphic text-based environment.
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portions represent erroneous calls.

Table 1
High-level descriptive patterns of failing compilations and errors over the course of the 10 weeks.

Failed javac calls per student Compilation errors per student Compilation errors per failed javac call

Blocks 75.11 165.78 2.23
Text 69.55 164.26 2.21
Table 2

The frequency of successful compilations with a given Levenshtein distance from the last successful compilation of the same program.

Levenshtein Distance

0 1 2 3 4 5-10 11-25 26-100 > 100

Blocks 7.00 3.37 5.70 1.33 2.37 4.30 3.52 6.56 3.33
Text 6.16 3.00 5.58 1.23 2.13 3.77 3.48 5.87 2.55

Fig. 7. The ten most frequently encountered Java errors, grouped by condition.

Basically, programming approach
once they switched to Java was the

same.
(Differences not statistically
significant.)




Paper Session: Blocks

SIGCSE '19, February 27-March 2, 2019, Minneapolis, MN, USA

Block-based Comprehension: Exploring and Explaining Student
Outcomes from a Read-only Block-based Exam

David Weintrop Heather Killen
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ABSTRACT

The success of block-based programming environments like
Scratch and Alice has resulted in a growing presence of the block-
based modality in classrooms. For example, in the United States, a
new, nationally-administered computer science exam is evaluating
students’ understanding of programming concepts using both
block-based and text-based presentations of short programs
written in a custom pseudocode. The presence of the block-based
modality on a written exam in an unimplemented pseudocode is a
far cry from the informal, creative, and live coding contexts where
block-based programming initially gained popularity. Further, the
design of the block-based pseudocode used on the exam includes
few of the features cited in the research as contributing to positive
learner experiences. In this paper, we seek to understand the
implications of the inclusion of an unimplemented block-based
pseudocode on a written exam. To do so, we analyze responses
from over 5,000 students to a 20 item assessment that included

Talal Munzar Baker Franke
University of Maryland College Code.org
Park, MD, USA Seattle, WA, USA
tmunzar@terpmail.umd.edu baker@code.org

programming tools into K-12 classrooms. While some block-based
programming environments have a long history in formal
educational contexts (e.g. Alice), other block-based tools were
specifically designed for informal learning spaces (e.g. Scratch). As
part of the transition of block-based programming into K-12
classrooms, the modality is starting to be used in ways quite
distinct from how it was initially designed. Nowhere is this clearer
than when it comes to assessment.

Many introductory computer science courses assess student
knowledge through written exams that ask students questions
about specific syntactic features of a programming language and
evaluate student comprehension of programs. While not ideal,
such questions lend themselves well to the multiple-choice
question format and thus can be graded quickly and objectively.
As a result, written, multiple choice assessments are common in
introductory computing contexts.

The rise of block-based programming environments in
classrooms presents an interesting challenge for educators. What



Modality
ock-based

Score By Modality

(01301300) 31008

Figure 3. Average scores on the assessment by modal



Percent Correct By Concept

1991100 1U=a019d abelany

Figure 4. Average number of students who answered a
question correctly grouped by concept and modality



International Journal of Child-Computer Interaction i (RNEN) HNE-EEN

HARVRINE SR Contents lists available at ScienceDirect
-J\x «\\\/r"’ / CHILD-COMPUTER

-

AMA > ){/—3" \.;._'l‘
(».U\\\k .-—‘ 1‘ Dl
(24 (4 4 _

International Journal of Child-Computer Interaction

journal homepage: www.elsevier.com/locate/ijcci

How block-based, text-based, and hybrid block/text modalities shape
novice programming practices
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ARTICLE INFO ABSTRACT

Article history: There is growing diversity in the design of introductory programming environments. Where once all
Received 10 February 2017 novices learned to program in conventional text-based languages, today, there exists a growing ecosystem
iece“’eg gmor;vngfg(f)orstApnl 2018 of approaches to programming including graphical, tangible, and scaffolded text environments. To
ccepte April 201 date, relatively little work has explored the relationship between the design of novice programming

Available online xxxx . . . . . .
environments and the programming practices they engender in their users. This paper seeks to shed

Keywords: light on this dimension of learning to program through the careful analysis of novice programmers’
Design experiences learning with a hybrid block/text programming environment. Specifically, this paper is
Modality concerned with how novices leverage the various affordances designed into programming environments
Programming Environments and programming languages to support their early efforts to author programs. We explore this relation-
Computer Science Education ship through the construct of modality using data from a study conducted in a high school computer

Block-based Programming science classroom in which students spent five weeks working in block-based, text-based, and hybrid

block/text programming environments. This paper uses a detailed vignette of a novice writing a program
in the hybrid environment as a way to characterize emerging programming practices, then presents
analyses of programming trends from the full study population to speak to the generality of the practices
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Non-chart but still interesting...

At the same time, the Blocks modality makes it easy for students
to quickly add commands to their program because dragging-and-
dropping is faster than typing in commands one character at a time.
As a result, on average, students in the Blocks condition produced
programs that were longer in length than their Text and Hybrid
peers. On 10 of the 13 assignments in the 5-week curriculum the
Blocks students produced the longest programs on average, with
students in the Hybrid condition producing the longest programs
in the other three assignments. Running an ANOVA calculation
for each of the assignments, four were found to have statistically
significant differences across conditions at the p < .05 level: Tip
Calculator (F(2, 82) = 4.78, p = .01), Grade Ranger (F(2, 71) =
5.26,p = .01), Radial Art (F =(2,83) =3.51, p = .03) and Connect
4 (F(2,87) = 2.90, p = .05). In all but the Connect 4 assignment,

to accomplish relative to the other assignments.’ The fact that we
see a difference in conditional logic is another piece of evidence
towards the larger trend of modality affecting students’ learning
and use of those constructs [41,58]. In this case, we are using
program length as a rough proxy for ease of composition given that
all conditions had the same time on task. The fact that programs
can be assembled more easily contributes to students running their
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ABSTRACT

A new wave of collaborative robots designed to work
alongside humans is bringing the automation historically
seen in large-scale industrial settings to new, diverse
contexts. However, the ability to program these machines
often requires years of training, making them inaccessible or
impractical for many. This paper rethinks what robot
programming interfaces could be in order to make them
accessible and intuitive for adult novice programmers. We
created a block-based interface for programming a one-
armed industrial robot and conducted a study with 67 adult
novices comparing it to two programming approaches in
widespread use in industry. The results show participants
using the block-based interface successfully implemented
robot programs faster with no loss in accuracy while

reporting higher scores for usability, learnability, and overall
eaticfaction The contribution of thie work 1¢ showino the

is finding that automation does not necessarily replace
workers, but it does change the nature of the work [9].

Collaborative robots, which are intended to work safely
alongside humans, exemplify this trend [12,22,27].
Collaborative robots take advantage of “the interplay
between machine and human comparative advantage [that]
allows computers to substitute for workers in performing
routine, codifiable tasks while amplifying the comparative
advantage of workers in supplying problem-solving skills,
adaptability, and creativity” [9]. In order to support new
challenges that emerge from being placed in smaller factories
and given a wider variety of tasks, these new robots must be
safe, efficient and, support quick reprogramming.

While the design of the machines themselves has resulted in
more powerful and flexible robots with a greater set of
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Figure 1. The CoBlox programming environment. The left side of the environment contains the block-based robot programming

interface for Roberta, shown on the right.
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Figure 5. The virtual version of ABB’s Flex Pendant
programming interface.
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Time on Task (in seconds)
Condition Task 1 Task2 Task3 Task4
CoBlox = 438.36 843.64 48143 621.29
Flex Pendant = 1679.08 1003.32 506.93 605.00
Polyscope = 940.73 1398.59 801.76 653.09

Table 1. Time-on-task in seconds for each condition, including
only participants that attempted each task.
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Figure 8. Composite scores for three attitudinal dimensions for the three conditions based on responses to the post survey. The
differences between the three conditions are statistically significant for all three categories.



Criteria CoBlox Flex Polyscope

Pendant
Faster Task Completion v

More Correct

Easier to Use v
Easier to Learn v
Higher Satisfaction v

Table 2. Summary of the comparative findings



The paper you read for last

Comparing Block-Based and Text-Based Programming
in High School Computer Science Classrooms

DAVID WEINTROP, University of Chicago
URI WILENSKY, Northwestern University

The number of students taking high school computer science classes is growing. Increasingly, these students
are learning with graphical, block-based programming environments either in place of or prior to traditional
text-based programming languages. Despite their growing use in formal settings, relatively little empirical
work has been done to understand the impacts of using block-based programming environments in high
school classrooms. In this article, we present the results of a 5-week, quasi-experimental study comparing
isomorphic block-based and text-based programming environments in an introductory high school program-
ming class. The findings from this study show students in both conditions improved their scores between pre-
and postassessments; however, students in the blocks condition showed greater learning gains and a higher
level of interest in future computing courses. Students in the text condition viewed their programming ex-
perience as more similar to what professional programmers do and as more effective at improving their
programming ability. No difference was found between students in the two conditions with respect to confi-
dence or enjoyment. The implications of these findings with respect to pedagogy and design are discussed,
along with directions for future work.

CCS Concepts: « Social and professional topics — Professional topics; Computing education; K-12
education;

Additional Key Words and Phrases: Block-based programming, programming environments, design

ACM Reference format:

David Weintrop and Uri Wilensky. 2017. Comparing Block-Based and Text-Based Programming in High
School Computer Science Classrooms. ACM Trans. Comput. Educ. 18, 1, Article 3 (October 2017), 25 pages.
https://doi.org/10.1145/3089799
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Table 1. Distribution of Ease-of-Use Responses

Variables Loops Conditional Logic | Functions
Blocks | Text | Blocks | Text | Blocks Text Blocks | Text

1 (Very Easy) 13 10 11 3 14 8 5 2

Z 2 7 4 6 7 8 6 6 5
2. 3 4 5 3 9 2 6 9 7
o 4 2 4 3 4 0 2 3 6
5 5 0 2 1 3 2 3 1 2
é 6 1 2 3 1 0 2 1 3
7 (Very Hard) 0 1 0 1 1 1 2 3
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Between a Block and a Typeface: Designing and
Evaluating Hybrid Programming Environments

David Weintrop
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ABSTRACT

The last ten years have seen a proliferation of introductory
programming environments designed for learners across the
K-12 spectrum. These environments include visual block-
based tools, text-based languages designed for novices, and,
increasingly, hybrid environments that blend features of
block-based and text-based programming. This paper
presents results from a quasi-experimental study
investigating the affordances of a hybrid block/text
programming environment relative to comparable block-
based and textual versions in an introductory high school
computer science class. The analysis reveals the hybrid
environment demonstrates characteristics of both ancestors
while outperforming the block-based and text-based
versions 1n certain dimensions. This paper contributes to
our understanding of the design of introductory

programming environments and the design challenge of
creatino and evaliiatino novel renrecentations for learnino

Uri Wilensky
Center for Connected Learning and
Computer-based Modeling
Northwestern University
uri@northwestern.edu

reviewed environments [10]. Further, we expect this trend
to continue as a growing number of libraries are making it
casy to develop environments that incorporate a block-
based programming interface [12]. This growth 1n
popularity can be seen both in informal environments as
well as 1n classrooms where a growing number of curricula,
like Exploring Computer Science [29] and the Beauty and
Joy of Computing [13] utilize block-based programming.

Until recently, block-based and text-based programming
environments have been distinct. An environment used
either one modality or the other. As a result, learners trying
to migrate from a block-based environment to a more
conventional text-based programming language had few
environmental supports to facilitate the transition. Multiple
approaches have been developed to mitigate this transition
cost. One approach 1s pedagogical, relying on teachers to
assist learners in moving between modalities. An alternative
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From Blocks to Text and Back: Programming Patterns in a
Dual-modality Environment

David Weintrop
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ABSTRACT

Blocks-based, graphical programming environments are
increasingly becoming the way that novices are being introduced
to the practice of programming and the field of computer science
more broadly. An open question surrounding the use of such tools
is how well they prepare learners for using more conventional
text-based programming languages. In an effort to address this
transition, new programming environments are providing support
for both blocks-based and text-based programming. In this paper,
we present findings from a study investigating how learners use a
dual-modality environment where they can choose to work in
either a blocks-based or text-based interface, moving between
them as they choose. Our analysis investigates what modality
learners choose to work in, and if and why they move from one
representation to the other within a single project. We conclude
with a discussion of design implications and future directions for
this work. This work contributes to our understanding of the
affordances of blocks-based programming environments and
advances our knowledge on how best to utilize them.

CCS Concepts

Human-centered computing—Visualization * Social and
professional topics*Computer science education

General Terms
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provides syntactic information through the visual shape of
commands and allows users to author programs by dragging-and-
dropping block-shaped commands together. As more, and
younger, learners are introduced to programming, the blocks-
based approach is becoming the de facto standard for introductory
programming environments and for early exposure to computer
science (CS) more broadly.

Despite widespread use, open questions remain about the blocks-
based modality and its fit in conventional CS education. More
specifically, it is unclear how well such tools prepare students for
future CS learning opportunities or how best to transition learners
from blocks-based introductory tools to more conventional text-
based languages [19]. One proposed solution involves the creation
of dual-modality interfaces that allow learners to seamlessly shift
back-and-forth between blocks-based and textual representations
[3, 7, 12, 16]. In addition to allowing the user to decide what
modality to work in, such tools also provide an opportunity for
learners to see each representation of code “side-by-side,” which
can highlight structural similarities as well as syntactic differences
[22]. While recent work has offered insight into perceived
supports offered by blocks-based environments, and in the ways
learners transition from blocks to text, less 1s known about the
particular conceptual resources mobilized by each representation.

In other words, when novices have a choice between blocks and
vt vvrhoe~rlh v~ AdAaliewr AA haer ALhAanceaD VYL A LLAaver AAaas A



HSC: High School Condition

GC: Graduate Condition (enrolled in a graduate level
course on the design of educational learning environments
(mean age of 29))

novices learning to program. During the course of the studies,
students overwhelming used the blocks-based modality for the
programming assignments. Participants in the HSC used the block
modality 92% of the time, while the GC participants used the

block modality 91% of the time. This suggests, at least at a high
level, that the blocks-based modality 1s not more developmentally

appropriate for one age over the other. However, the distribution
of time spent in the two modalities was not uniform across the
student population. Instead, some students worked almost
exclusively in blocks, while other preferred text, and a third group
moved between the two. In other word, the choice of modality is
not driven by age, but instead, by some other factor.



Student Modality Choice Over Time
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Figure 3. Student modality choice over time — the darker the square, the more time spent in the text interface.



Programming Experience vs Percent of Events for Each Modality

100%

90%
80%
70%
LU%
S0%
40%
30%
20%
10%

0%

1 3 4 5

o Nocks Text



NORTHWESTERN UNIVERSITY

Modality Matters: Understanding the Effects of Programming Language Representation in High

School Computer Science Classrooms

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY



Count of Student Responses

Visual Layout  Ease of = Browsability Prefabricated Visual Syntax In-editor Help
Composition Commands Outcomes

Figure 5.1. Student reported differences between Pencil.cc and Java at the midpoint of the study.
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Figure 5.2. Student reported differences between Pencil.cc and Java at the conclusion of the
study.
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Using Commutative Assessments to Compare Conceptual
Understanding in Blocks-based and Text-based Programs
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ABSTRACT

Blocks-based programming environments are becoming
increasingly common in introductory programming courses, but to
date, little comparative work has been done to understand if and
how this approach affects students’ emerging understanding of
fundamental programming concepts. In an effort to understand
how tools like Scratch and Blockly differ from more conventional
text-based introductory programming languages with respect to
conceptual understanding, we developed a set of “commutative”
assessments. Each multiple-choice question on the assessment
includes a short program that can be displayed in either a blocks-
based or text-based form. The set of potential answers for each
question includes the correct answer along with choices informed
by prior research on novice programming misconceptions. In this
paper we introduce the Commutative Assessment, discuss the
theoretical and practical motivations for the assessment, and
present findings from a study that used the assessment. The study
had 90 high school students take the assessment at three points
over the course of the first ten weeks of an introduction to
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qualifiers describing under what conditions a given language is
the best choice. These so called ‘language wars’ have been raging
for as long as computer science has been taught, with little in the
way of consensus emerging and with potentially detrimental
effects [58]. Much work has been done attempting to empirically
answer the question of which text-based language is best for
novices, or at least identify features that make a language more or
less accessible to beginners. While there is much to show for this
effort, an alternative to conventional text-based languages is
emerging in novice programming classrooms that brings a new
dimension to introductory tools. Graphical blocks-based
programming tools like Scratch [49], Blockly [23], and Alice [13]
are becoming commonplace in introductory programming
contexts, with a growing number of new curricula utilizing
blocks-based programming tools in their materials, including the
CS Principles project, the Exploring Computer Science program,
and the materials being developed by code.org. The introduction
of blocks-based programming environments changes the
landscape of introductory tools, replacing questions of syntactic
features of textual lancuaces with the lareer auestion of if text-
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Comparing Textual and Block Interfaces in a Novice
Programming Environment
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ABSTRACT

Visual, block-based programming environments present an
alternative way of teaching programming to novices and
have proven successful in classrooms and informal learning
settings. However, few studies have been able to attribute
this success to specific features of the environment. In this
study, we isolate the most fundamental feature of these en-
vironments, the block interface, and compare it directly to
its textual counterpart. We present analysis from a study
of two groups of novice programmers, one assigned to each
interface, as they completed a simple programming activity.
We found that while the interface did not seem to affect
users’ attitudes or perceived difficulty, students using the
block interface spent less time off task and completed more
of the activity’s goals in less time.

Categories and Subject Descriptors

K.3.2 [Computers and Education|: Computer and In-
formation Science Education; D.1.7 [Programming Tech-
niaues!: Visual Proerammine

Tiffany Barnes
North Carolina State University
890 Oval Drive
Raleigh, NC

tmbarnes@ncsu.edu

been evaluated in classrooms [24, 25, 26], summer camps [21,
31] and after-school programs [22].

In this paper, we will use the term Block-Based Program-
ming Environment (BBPE) to refer to those environments
that allow users to construct and execute computer pro-
grams by composing atomic blocks of code together to pro-
duce program structure. These code blocks may additionally
have slots, which can be filled by other blocks; for example,
a function call block may have slots for each of its parame-
ters. These blocks may represent high-level structures, such
as methods or loops, or low-level operators such as multipli-
cation or equality comparison. An example is shown in Fig-
ure 1. There exist a variety of programming environments
which use the block metaphor, but here we limit our use of
the term BBPE to those that use procedural languages. For
a more thorough introduction to one BBPE, see [29].

Much work has gone into the evaluation of BBPEs. Pre-
vious studies have identified what programming concepts
students use in BBPEs [22], measured learning gains from
classes based on BBPEs [24, 26], and investigated the ease of
transitionine from these environments to textual proeram-
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Figure 4: The distribution of difficulty ratings given
by students in each condition. The questions, in or-
der, asked users to rate their difficulty understand-
ing instructions, deciding what to do, getting the
program to run (compile), implementing a solution
and figuring out what went wrong (debugging).
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Value Block Text p d
Total 2273.9 (596.4) | 2208.0 (427.1) | 0.851 —
Idle 407.2 (238.9) 793.5 (368.3) | 0.002 | 1.27
Active | 1866.8 (617.4) | 1414.5 (463.1) | 0.014 | 0.82

Table 3: Average total, idle and active time in sec-
onds for both groups (with standard deviations).
The differences in idle and active time are signifi-
cant, and Cohen’s d is given.
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pleted the goal. Values are not strictly increasing, in
part because goals could be completed out of order.
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the Text group completed them.



Empirical Comparison of Visual to Hybrid
Formula Manipulation in Educational
Programming Languages for Teenagers
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Abstract

Visual programming environments hold great potential
for end-user programming, as they, e.g., aim at dimin-
ishing the syntactical burden and enabling a focus on
the semantic aspects of coding. Hence, graphical ap-
proaches have gained attention in the context of K-12
computer science education. Scratch, as being the prime
example, is a visual educational language, where even
formulas are composed utilizing Lego-style blocks. How-
ever, graphical creation and manipulation of complex
and nested formulas can become overly cumbersome.
Thus, we propose a hybrid approach employing visual
creation and textual representation of formulas. In order
to evaluate the method, a usability study has been con-
ducted, comparing Scratch to our mobile programming

Wolfgang Slany
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wolfgang.slany@tugraz.at

1. Introduction

"Computational Thinking” refers to the thought process
of formulating and solving problems that involve ab-
straction, algorithmic thinking, the application of math-
ematical concepts, and the comprehension of problems
of scale. Those fundamental skills are, however, not
only relevant for computer scientists, but should be
part of every child’s analytical ability [22]. Several ini-
tiatives and organizations have been launched such as
“code.org” or “made with code” with the specific goal
to expose more children and adolescents to program-
ming. The idea is to spark interest in computer science
early on and make them not only consumers of digital
content, but rather creators.

Visual Programming Languages (VPL) have been
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End-User Experiences of Visual and Textual
Programming Environments for Arduino

Tracey Booth and Simone Stumpf
City University London
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Abstract. Arduino is an open source electronics platform aimed at hobbyists,
artists, and other people who want to make things but do not necessarily have a
background in electronics or programming. We report the results of an explora-
tory empirical study that investigated the potential for a visual programming
environment to provide benefits with respect to efficacy and user experience to
end-user programmers of Arduino as an alternative to traditional text-based
coding. We also investigated learning barriers that participants encountered in
order to inform future programming environment design. Our study provides a
first step in exploring end-user programming environments for open source
electronics platforms.

Keywords: End-user programmers, Arduino, Visual Programming

1 Introduction

Open source hardware platforms such as Arduino [23] and Raspberry Pi [32] have
reinvigorated interest in hacking and tinkering to create interactive electronics-based
projects. These platforms present an opportunity for end users to move beyond being

DY A T Y T Y A A 1 * ¢ *  _ _1* s 1
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Fig. 4. Participant completion using programming environments for all tasks (left) and for
create/modify task types (right)



demanding (Figure 5; a higher score indicates either higher workload or decreased
performance). Although this may seem initially perplexing we found that participants
carried out vastly more mouse clicks and mouse movements in the visual environ-
ment, which may explain this perceived cost.
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Fig. 5. Participants’ TLX scores for textual (diamonds) and visual (circles) environments. The
mean score was always higher for the textual environment, except relating to Physical demand.
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ABSTRACT

In the past decade, improvements have been made to the en-
vironments used for introductory programming education,
including by the introduction of visual programming lan-
guages such as Squeak and Scratch. However, migration
from these languages to text-based programming languages
such as C and Java is still a problem. Hence, using the Open-
Blocks framework proposed at the Massachusetts Institute
of Technology, we developed a system named BlockEditor,
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Categories and Subject Descriptors

D.1.7 [Programming Techniques|: Visual Programming;
D.2.2 [Software Engineering|: Design Tools and Tech-
niques; K.3.2 [Computers and Education]|: Computer
and Information Science Education

General Terms
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Abstract

This study examined whether developing earlier forms of knowledge in specific learning
environments prepares students better for future learning when they are placed in
an unfamiliar learning environment. Forty-one students in the fifth and sixth grades
learned to program robot movements using abstract concepts of speed, distance and
direction. Students in high-transparency environments learned visual programming to
control robots (eg, organizing visual icons), and students in low-transparency environ-
ments learned syntactic programming to control robots (eg, text-based coding). Both
groups received feedback and models of solutions during the learning phase. The assess-
ment midway showed students in both conditions learned equally well when solving
problems using familiar materials. However, a difference emerged when students were
asked to solve new problems, using unfamiliar materials. The low-transparency group
was more successful in adapting and repurposing their knowledge to solve novel prob-
lems that required the use of unfamiliar high-transparency materials. Students in
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Posttest (repeated problem) Posttest (new problem)

Which icon programs the robot | Which program will make the lights
to repeat an action many times? | blink continuously?
(Circle the icon) (Mark the box)

An action icon goes
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repeat an action.
(Mark the box)

Figure 6: Example of virtual programming problems (virtual platform) on the midtest and posttest
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Using Alice in CS1 — A Quantitative Experiment

Ryan Garlick
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ABSTRACT

We present the results of a 2-semester study of using the 3-D
graphical programming environment Alice to introduce
programming fundamentals during the first two weeks of CS1.

One cohort of students was taught basic programming constructs
via traditional pseudocode, while a second group used Alice. A
student survey was collected, along with performance metrics
on a common quiz and first exam.

Students using Alice scored lower than those taught with
pseudocode on common performance metrics and responded
less-favorably to Alice in a survey. Anecdotal evidence of using
Alice with younger students was more positive.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
Computer Science Education.

General Terms

Meacurement Fxnerimentation

Ebru Celikel Cankaya

University of North Texas
Dept. of Computer Science and Engineering

ecelikel@cse.unt.edu

While proposed solutions have been numerous, empirical
studies of what works and what does not are less common.
Other studies have compared CS1 students who took a CSO
course to those who did not [7, 9]. Drawing conclusions about
the influence of CSO content seems difficult, as exposure to any
programming related material in an additional course is likely to
improve CS1 performance.

This paper aims to measure the effect of using a brief
introduction to programming fundamentals via Alice versus a
control group using traditional pseudocode (hereafter the
pseudocode cohort). The comparison period involved the first
two weeks of each CS1 class.

Three CS1 instructors participated in this study (including the
authors), which encompassed 5 class sections, 2 semesters, and
over 150 students.

From the Alice website [1]: [Alice] allows students to learn

fundamental programming concepts in the context of creating

- N TS



Alice vs. Pseudocode
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3.1 Alice Class Sections

Two CSlclass sections (82 total students) were presented with
instruction in Alice. A very brief introduction to programming
was presented in pseudo-code style statements. However, the
core concepts of variable creation, looping, control statements
and functions were presented via examples given in Alice, with
discussion of how Alice was enabling a graphical representation
of logical constructs.

Students worked through the tutorials included with the Alice
software and were provided with links to additional Alice
resources and tutorials. Two weeks of classroom lecture were
spent covering these topics, introducing Alice, and working
through examples in class, followed by a transition to Java.

The homework assignment was as follows:

Create an animation in the Alice environment. Your topic may
be anything that you choose. Special consideration will be given
to interactivity, complexity, and creativity. Your animation must
contain the following elements:

o  You must create a new variable, function, and method

o  You must have interactivity in your animation that is
controlled by the user.

o  You must have a loop in the program.

Since the public will vote on the best animations, you are
encouraged to learn extended techniques to make your program
more sophisticated. Prizes will be awarded to the best
submissions.

3.2 Traditional Pseudocode Class Sections
Two separate CS1 class sections (72 total students) were
introduced to programming concepts via traditional pseudocode.
This involved two weeks of slides and discussion related to
pseudocode. The same topics: looping, control statements, and
functions were introduced by tracing through pseudocode
algorithms rather than via Alice. The pseudocode cohort also
transitioned to Java.

The homework assignment in these sections was to create a
pseudo code algorithm to calculate GPA.



3.3 Homework, Assignments and Quizzes

A common quiz was given to both the Alice and pseudocode
cohorts. It included a given algorithm for finding the average of
a group of numbers using a loop and conditional statements
presented as blocks with arrows drawn between them to indicate
program flow. The assignment was designed to provide a mix of
pseudocode and the “tiles” dragged into the Alice environment
to form programming constructs. Students were then asked to
create a “make change” program, as illustrated by this excerpt
from the quiz:

“Create a process for determining the correct number of
quarters, dimes, nickels and pennies to give as change. For
example, if the change amount is .82 (it will always be .99 or
less), your process should end up with quarters = 3, dimes = 0,
nickels = 1, pennies = 2",

Students were told they could use any method to solve the
problem — drawing flowchart-style blocks similar to the
development window in Alice, writing pseudo-code, or any
other method that presented a coherent solution to the problem.
This flexibility was designed to minimize any possibility of bias
to the advantage or disadvantage of either teaching cohort
employed in the experiment.

The mean quiz grade was lower among students in the Alice
cohort, however the data did not quite establish statistical
significance to a P-value of 0.05 (P=.0527).

100 — I

~ Traditional n=83

/" Alicen=72

Figure 2. Mean Quiz Grade By Cohort



A common first exam was given 2-3 weeks after the Alice /
pseudocode instruction. While largely based on Java syntax, the
exam included questions that tested the ability to recognize the
output of given programs and analyze existing program logic.

All exams were graded by a single instructor without knowledge
of the students’ cohort. Mean exam grades were significantly
higher among students in the traditional cohort (P=.0291).

40 -‘
20 -T Traditional n=74
0 1.;;: o - Alice n=82

Figure 3. Mean First Exam Grade by Cohort
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Efficiency of Projectional Editing:
A Controlled Experiment

Markus Volter
iIndependent / itemis
Stuttgart, Germany

Thorsten Berger
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of Gothenburg, Sweden

ABSTRACT

Projectional editors are editors where a user’s editing actions
directly change the abstract syntax tree without using a
parser. They promise essentially unrestricted language com-
position as well as flexible notations, which supports aligning
languages with their respective domain and constitutes an es-
sential ingredient of model-driven development. Such editors
have existed since the 1980s and gained widespread attention
with the Intentional Programming paradigm, which used
projectional editing at its core. However, despite the bene-
fits, programming still mainly relies on editing textual code,
where projectional editors imply a very different—typically
perceived as worse—editing experience, often seen as the
main challenge prohibiting their widespread adoption. We
present an experiment of code-editing activities in a projec-
tional editor, conducted with 19 graduate computer-science
students and industrial developers. We investigate the effects
of projectional editing on editing efficiency, editing strate-
gies, and error rates—each of which we also compare to
conventional, parser-based editing. We observe that editing

Yy P A T Ny, S : | + 11" 1 R |

Hans Peter Jensen,
Taweesap Dangprasert
IT University of Copenhagen,

Janet Siegmund
University of Passau,
Germany

Denmark

and directly change the AST with their editing gestures. This
concept is different from parser-based editing, where users
change the concrete syntax (characters in a text buffer), and a
parser then matches the syntax against a grammar definition
to construct the AST. Projectional editing, also known as
structured editing or syntax-directed editing, is not a new
idea; early references go back to the 1980s and include the
Incremental Programming Environment [32], GANDALF [35],
and the Synthesizer Generator [39]. Work on projectional
editors continues today: Intentional Programming [44, 18, 45,
14] is its most well-known incarnation. Other contemporary
tools [20] are the Whole Platform [9], Ma&s [3], Onion, and
MPS [4]. The latter is the instrument of this work. Most of
these projectional editors are used in language workbenches—
tools for developing and composing languages [20, 21].
Projectional editors have two main advantages, both result-
ing from the absence of parsing. First, they support notations
that cannot easily be parsed, such as tables, diagrams or
mathematical formulas—each of which can be mixed with
the others and with textual notations [45, 51]. Second, they
sunport various wavs of lancuace comnposition [19] tvpicallv
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1 Introduction

Projectional editors (aka. structure editors, structural editors,
block-based editors, etc.) are quite an old technique that was
probably according to Gomolka and Humm [4] first articu-
lated by 1971 [6]. The goal of a projectional editor is to pro-
vide tool support for writing documents that follow a given
structure. Spoken in terms of grammars, it means a projec-
tional editor for a given grammar permits to write only valid
words of the language defined by the grammar: it gives users
the ability to fill in all nodes in the syntax tree by traversing
the tree manually. Hence, users either write incomplete words
or complete and valid words of the language. For example,
for a simple grammar <Start>— “X” (“A” | “B” “C” | “D”")*
“Y"” users 1s given the ability to start with the “X” [something]|
“Y” and then to decide what to do with [something]. Then,
users just have the option to insert an “A”, “B” or “D”. In

were more recently introduced to a larger audience (see also
[16]).

While the motivation for such kind of editing is plausible,
it 1s not that clear what the effect of such kind of editors is.
A recent controlled experiment by Berger et al. [ 1] revealed
quite mixed results for the comparison of projectional and
text-based editing for non-trained users and for programming
related tasks: in average the text editor group even had a posi-
tive measurable benefit compared to the projectional editor
group. However, the result assumed one thing: the people
working on the tasks were familiar with the underlying syn-
tax.

We believe projectional editors have a large benefit — but
rather not in situations where the language 1s known. L.e. we
do not think that the main benefit is in the pure editing process.
We think the main benefit of projectional editors 1s in situa-
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A Few High-Level Takeaways

® For familiar languages—e.g., in a course setting where language becomes familiar over

time—text-based and structure-based editors are surprisingly similar
® | said surprising, but in some ways this makes sense; when we hold the language
stable, it's basically the same task just done in mildly ditterent styles

® Over time, given the option of transitioning smoothly between the two, users start using
text more than at the beginning (though not always more than structure editing mode)

® Beginners have fonder teelings about CS when they start with structure editors vs. with
text editors

® Structure editors aren’t a good substitute for pseudocode

® For unfamiliar languages—e.g., domain-specific languages that will be used once a year
—structure editors are more efficient
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Colorful puzzle-looking editors look like
kids’ toys to me, and | refuse to believe
they're real programming.
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Fig. 3. The mean scores for students in the two conditions on the three administrations (Pre, Mid, and Post) of the Commutative Assessment.

| don’t care that people learn just as many computing
skills with them, can transfer knowledge to other
programming environments, or that | can use the same
programming languages and write the same programs in
both kinds of environments!!! These environments feel
restrictive to me, and | can’t take them seriously!!!

It's super cool that you now know your
biases on this topic! | hope this is useful
self-knowledge! :)




Why did we spend all this time on this?

® Not because this course needs a bunch of data on projectional editors in particular,
although it's convenient that we already have a lot of human tactors studies of them.

® Perhaps a little bit more because of all the strong opinions programmers hold about
them.

® Primarily because one of the biggest goals of this course is that you won't rely on

folk theory in your PL and programming environment design decisions.

® Our own intuitions and experiences are awesome for helping us brainstorm,
giving us the ideas that we'll eventually prototype and put in front of users.

® But reliance on folk theories, the tenets of various PL design factions, and
personal experiences is how we got to the messy languages we have now!

® ...and hopetully you're taking this class because you think we can do better! :)



Why did we spend all this time on this?

® So how do we do better?
® Surprisingly often, you can look to the literature to see if there's support for
your folk theory!
® There's a lot of research already out there
® And when there's no research out there already?
® By the end of this class, you'll have the tools you need to design and
execute the research yourself!



Why did we spend all this time on this?

® And what should we do about folk theories?
® Don’tignore them
® | know, | know, | just spent all this time talking about how folk theories can be dangerous,

ead us down bad design paths
® Do see them as a great source of hypotheses
® A community of practice often does observe important features of their domain before
"science” catches on
® Going to steal James C. Scott's definition of metis: "a wide array of practical skills ana

acquired intelligence in responding to a constantly changing natural and human
environment.”
® Don't trust them blindly
® Just don't take them as fact!
® A hypothesis is just a hypothesis. We'll start making decisions with it once it's been
supported or not supported



Back to program slicing

sum = 0
prod = 1 prod = 1
=1 =1
while (i < 11) while (i < 11)
{ | (
sum = sum —+ |
prod = prod * i prod = prod * i
=i+ 1 =i+ 1
) prod )

figure from Program Slicing, Keith Gallagher et al.



Group brainstorming activity

sum = 0
prod = 1 prod = 1
=1 =1
while (i < 11) while (i < 11)
{ | (
sum = sum -+ |
prod = prod * i prod = prod * |
=141 =141
) prod _}

Remember how we talked about treating programs as data? Say you have the AST for
this program. How will you get the appropriate program slice?

figure from Program Slicing, Keith Gallagher et al.



