
Text-Based vs. Block-Based
and Structural Editors Epic

Literature Review

CS294-184: Building User-Centered Programming Tools UC Berkeley Sarah E. Chasins 10/13/20

Reading reflection

• What did the two tools you saw in the demo videos have in
common?

• When you figure out that a program you’re debugging is
producing a wrong output, what’s your next step?

The key common feature:
program slicing!

1981

The same example, but maybe a bit more familiar looking!

figure from Program Slicing, Keith Gallagher et al.

There was a request on the slack for folks to post screenshots of their newly
implemented constructs, if they’re willing.

If you’re comfortable sharing, please go ahead and post yours!

Before we fully move on to
program slicing…

Let’s look back at Thursday’s discussion a moment.

Thursday discussion

• It was awesome :)

• So excited that everyone was so engaged in the
discussions (both in breakout rooms and whole-group) and
interested in the topics

• Great to hear so many perspectives

• …but there were some folk theories coming out! :)

Us vs. Them

If you plan to spend any additional years in CS at all, I highly recommend reading the whole paper:
https://dl.acm.org/doi/10.1145/2960310.2960312

Here’s a picture of a rainbow so you can find this slide and therefore this link later!
https://www.johnentwistlephotography.com/

https://dl.acm.org/doi/10.1145/2960310.2960312

Text- vs. Structure-Based Editors:
The lit review

Going to focus on the about the last 10 years of the literature,
since the editors available have changed a fair amount.
But we’ll also take a look at a lit review that covers prior work.

https://abc7news.com/society/end-of-the-decade-googles-top-trends-of-the-2010s/5749300/

Goals for the upcoming flood of
data

• That we all leave recalling a few of the key insights that
have come up with repeatedly

• That we know we don’t have to rely on folk theories!

Statistically significant

Students using either
blocks- or text-based

programming environments
for the same language

(pencil.cc)

At this point, all students
switch to text-based Java

No particular pedagogic
approach to the transition.

They just switched.

http://pencil.cc

Basically, programming approach
once they switched to Java was the

same.
(Differences not statistically

significant.)

Other interesting data from this paper…

Non-chart but still interesting…

CoBlox

Flex
Pendant Polyscope

The paper you read for last
Thursday.

Prefix of

Students have
been trained in…

Questions are
asked in…

HSC: High School Condition
GC: Graduate Condition (enrolled in a graduate level
course on the design of educational learning environments
(mean age of 29))

This one’s about
programming on your phone!

Hybrid Structure Only

NGA: Not good at all
NG: Not good
G: Good

Slight caveat here. All the works they include cover
“block-based” editors, but they use this to include non-
projectional editors that have blocks that snap together.
Also, not all of the comparisons are against text-based

programming environments.

Mostly I’m not re-covering the same ground that’s already covered in the meta-analysis,
but I wanted to pull out the most negative studies in each category just to show that

there really are works that find negative outcomes!

Oops, those are “blocks," but that’s not a
structure editor. Next paper…

Mostly I’m not re-covering the same ground that’s already covered in the meta-analysis,
but I wanted to pull out the most negative studies in each category just to show that

there really are works that find negative outcomes!

Awesome, 2 birds, 1 stone

Alice vs. Pseudocode

Also one of last Thursday’s papers.

Proj: Projectional (inexperienced MPS users)
Par: Parser (text editor)
ProjE: Projectional + Experts (experienced MPS users)

• For familiar languages—e.g., in a course setting where language becomes familiar over
time—text-based and structure-based editors are surprisingly similar
• I said surprising, but in some ways this makes sense; when we hold the language

stable, it’s basically the same task just done in mildly different styles
• Over time, given the option of transitioning smoothly between the two, users start using

text more than at the beginning (though not always more than structure editing mode)
• Beginners have fonder feelings about CS when they start with structure editors vs. with

text editors
• Structure editors aren’t a good substitute for pseudocode
• For unfamiliar languages—e.g., domain-specific languages that will be used once a year

—structure editors are more efficient

A Few High-Level Takeaways

Colorful puzzle-looking editors look like
kids’ toys to me, and I refuse to believe
they’re real programming.

I don’t care that people learn just as many computing
skills with them, can transfer knowledge to other
programming environments, or that I can use the same
programming languages and write the same programs in
both kinds of environments!!! These environments feel
restrictive to me, and I can’t take them seriously!!!

It’s super cool that you now know your
biases on this topic! I hope this is useful

self-knowledge! :)

• Not because this course needs a bunch of data on projectional editors in particular,
although it’s convenient that we already have a lot of human factors studies of them.

• Perhaps a little bit more because of all the strong opinions programmers hold about
them.

• Primarily because one of the biggest goals of this course is that you won’t rely on
folk theory in your PL and programming environment design decisions.
• Our own intuitions and experiences are awesome for helping us brainstorm,

giving us the ideas that we’ll eventually prototype and put in front of users.
• But reliance on folk theories, the tenets of various PL design factions, and

personal experiences is how we got to the messy languages we have now!
• …and hopefully you’re taking this class because you think we can do better! :)

Why did we spend all this time on this?

• So how do we do better?
• Surprisingly often, you can look to the literature to see if there’s support for

your folk theory!
• There’s a lot of research already out there

• And when there’s no research out there already?
• By the end of this class, you’ll have the tools you need to design and

execute the research yourself!

Why did we spend all this time on this?

• And what should we do about folk theories?
• Don’t ignore them

• I know, I know, I just spent all this time talking about how folk theories can be dangerous,
lead us down bad design paths

• Do see them as a great source of hypotheses
• A community of practice often does observe important features of their domain before

“science” catches on
• Going to steal James C. Scott’s definition of metis: "a wide array of practical skills and

acquired intelligence in responding to a constantly changing natural and human
environment.”

• Don’t trust them blindly
• Just don’t take them as fact!
• A hypothesis is just a hypothesis. We’ll start making decisions with it once it’s been

supported or not supported

Why did we spend all this time on this?

figure from Program Slicing, Keith Gallagher et al.

Back to program slicing

Remember how we talked about treating programs as data? Say you have the AST for
this program. How will you get the appropriate program slice?

figure from Program Slicing, Keith Gallagher et al.

Group brainstorming activity

