
Structure/Structured/
Projectional Editors

CS294-184: Building User-Centered Programming Tools UC Berkeley Sarah E. Chasins 10/8/20

Reading Reflection

Discuss in groups
• What do you think is the difference between a visual editor and a

projectional editor (if any)?
• Based on the readings for today, come up with:

• 3 task-audience combinations for which you’d instantiate a
language in a non-projectional editor

• 3 task-audience combinations for which you’d instantiate a
language in a projectional editor

structure editor
==

structured editor
==

projectional editor

What’s happening inside my
compiler?

Assembly Language

Compiler

parser
 code generator

fun

square

num

return

×

num num

arg

int

int

What’s happening inside my
compiler?

Assembly Language

Compiler

parser
 code generator

fun

square

num

return

×

num num

arg

int

int

WHAT’S ALL THIS??

What’s happening inside my
compiler?

Assembly Language

Compiler

parser
 code generator

fun

square

num

return

×

num num

arg

int

int

AST

Abstract Syntax Tree (AST)

Compiler

fun

square

num

return

×

num num

arg

int

int

AST Abstract because we’re not putting in every detail of
the actual programming language syntax. (E.g., we’ve
dropped all those pesky semicolons and parens.)

Syntax because we’re representing the syntactic
structure of the code in question.

Tree because…well, obvious. But look, we got to
throw away a bunch of parens and other grouping
things because it’s all in the tree structure now!

Abstract Syntax Tree (AST)

Compiler

fun

square

num

return

×

num num

arg

int

int

AST Programs are data! We can mess with them!

…and we can build them up directly. We don’t
have to write in a textual programming
language and use a parser to recover this
structure.

Projectional Editor

An editor where you’re building up the AST directly.

People can argue about the meaning of “directly.” How far
does it have to be from the actual AST before it stops being a

projectional editor? But basically it’s just a judgment call.

Projectional isn’t a feature of
the programming language

It’s a feature of the programming environment!

Basically, it’s a matter of what editor we’re using to build up programs in
the language.

Python

…also Python

Programming Language vs.
Programming Environment

Both of those were Python—same language.

One editor was clearly textual, and one editor was clearly
visual.

One editor was (probably) non-projectional, and one editor
was clearly projectional.

Programming Language vs.
Programming Environment

Programming Language: For our purposes today, a code
generator that takes ASTs as input

Programming Environment: The tool or tools we use for
building up those ASTs

Programming Language vs.
Programming Environment

Why do people get this confused?

Probably just because there are some visual languages that
have only one interpreter, their own custom visual editor. If
no one has written a parser for a text-based version of a given
language, a visual environment may be the only way to write
programs in it.

Programming Language vs.
Programming Environment

Examples

Snap! : Both a programming language and a
paired programming environment

Scratch : Same deal, both a programming
language and a paired programming
environment

Blockly : A library for making programming
environments for whatever language you want

Projectional Editor vs. Visual Editor

Projectional Editor: Any editor (can be textual or visual) in
which we build up programs by interacting directly with ASTs

Visual Editor: Any editor (can be projectional or non-
projectional) in which we build programs by any means other
than typing text in a textbox

Visual but not
projectional

https://bubble.io/

build and run web applications without code

https://bubble.io/

Visual but not
projectional

Stagecast CreatorTM

allows adults and children as young as 8 to build

their own simulations and games

Vi
su

al
Te

xt
ua

l
Non-Projectional Projectional

+
paredit

Snap! Activity

https://snap.berkeley.edu/snap/snap.html

Snap! Activity - Stage 1

Snap! Activity - Stage 2

Snap! Activity - Stage 3

Snap! Activity - Stage 4

HW Assignment 6
http://schasins.com/cs294-usable-programming-2020/assets/assignments/a6.pdf

Note: Doesn’t have to be in Snap!

http://schasins.com/cs294-usable-programming-2020/assets/assignments/a6.pdf

Goal for next reading

• Prepare to write a program slicer! Understand the basics in
preparation for writing your own.

