
An E�cient Implementation of Plaid

A novel runtime representation for abstract state.

Sarah Chasins

Swarthmore College

schasi1@cs.swarthmore.edu

May 4, 2012

Abstract

State is central to understanding objects in the real
world � a moving car is very di�erent from a parked
car. Yet most object-oriented languages provide no
native support for state or state change. The Plaid
language introduces a new object model in which ob-
jects are not only instances of a class, but can also be
in mutable states. In Plaid, a car object can have one
abstract state for driving and another for not driving.
Transitioning the object from the driving to the not
driving state with Plaid's state change operator re-
moves members that are available only in the driving
state � for instance, speed � and adds members as-
sociated with the not driving state. Traditionally, ef-
�cient implementations of object-oriented languages
have required that objects have stable members in
order to facilitate fast member access. State change
alters members at runtime, presenting a new chal-
lenge for e�cient compilation. To address this chal-
lenge, we developed a novel representation for state at
runtime that enables state change without sacri�cing
fast member access. We implemented our represen-
tation in a new code generator and runtime system
for compiling Plaid to JavaScript. Our implementa-
tion improves program execution time by a factor of
48 over a Plaid implementation with an alternative
state representation that slows member access.

1 Introduction

Maintaining implicit state information is a common
practice in program design. Consider a �le object.
When it is open, a programmer can call a read
method or a close method. When the �le is closed,

those operations are no longer available, but a pro-
grammer can call an open method. This �le object
may need some information at all times � perhaps
the �le name � but it has two disjoint sets of mem-
bers, one for an open state, and one for a closed state.
In typical object-oriented languages, this state infor-
mation is never directly expressed.
The Plaid language introduces a model in which

object state is made explicit. Rather than keep a
variable that stores a �le object's current state, a user
can declare OpenFile and ClosedFile as substates
of File. The code file <- OpenFile transitions the
closed file object cleanly into the OpenFile state.
By introducing abstract states and explicit state

change, Plaid makes these transitions salient to the
programmer and facilitates code that depicts object
structure more clearly. Without the need to write
one's own state checks, code is neater and more com-
pact. Where programmers might forget to write state
checks, the runtime can indicate that a member is
unavailable in a particular state, rather than permit
continued execution and possible data corruption.
Support for abstract states is a desirable language

feature from a programmer's point of view; however,
implementing a language with state support is chal-
lenging. E�cient language implementation has his-
torically relied on stable object members. But ab-
stract state is only useful if it is accompanied by
state change, and state change means altering an ob-
ject's members at runtime. Transitioning file to
OpenFile is not very useful if file does not gain
a read method in the process.
This paper presents a new implementation of the

Plaid language, a general-purpose language which of-
fers language constructs for state change and for com-
posing states. We present a code generator for com-

1

piling Plaid to JavaScript, and a JavaScript runtime
with all the functionality necessary to support state
change. Our implementation leverages JavaScript's
prototype-based objects and �rst-class functions to
create a runtime in which a Plaid object's available
members are always the only members in a JavaScript
object that represents that Plaid object. That is,
even when a Plaid object is created by composing
many states, and when it inherits members from sub-
states, a single JavaScript object stores all the �elds
and methods of the Plaid object. Further, when the
Plaid object undergoes state change, any new mem-
bers are added to the same corresponding JavaScript
object.

By maintaining a single JavaScript object with all
available members, we ensure that the execution time
of member accesses and method calls is independent
of the number of component states that form a Plaid
state, and the depth of the state hierarchy. Thus,
utilizing Plaid's state abstractions to compose states
should not increase the execution time of method
calls, relative to hand-coding a Plaid state that con-
tains all the methods of the component states.

With all of a Plaid object's members in a sin-
gle JavaScript object, there is no self-evident pro-
cedure for enacting state change. The mem-
bers associated with File and the members asso-
ciated with OpenFile are not clearly distinguished.
When it comes time to transition from OpenFile to
ClosedFile, which members should our runtime re-
move from the object? To provide the information
necessary to answer this question, our runtime stores
a metadata object in each JavaScript representation
of a Plaid object. The metadata object stores com-
plete information about all the object's component
states, their tags (their unique names), their relation-
ships to each other, and the members associated with
them. The runtime updates these metadata trees as
Plaid objects transition between states.

The �at member structure and the use of a
metadata object to track all state information to-
gether represent a novel way of implementing ab-
stract state and state transitions. Also, to our knowl-
edge no other implementation has enabled language-
supported state change by adding and removing
members from corresponding objects in the target
language.

We used our implementation to run Plaid ver-
sions of several benchmarks from the V8 Benchmark
suite[24]. A previous implementation of Plaid com-
piled Plaid to Java. Our new implementation pro-

duced code that was up to 48 times faster than code
produced by the Java implementation.
The potential usability bene�ts of abstract state

are signi�cant, but before it will be widely adopted,
programmers must be persuaded that code with state
abstractions can be fast. This paper presents early
evidence suggesting that appropriate implementation
schemes can lower the overhead of supporting ab-
stract state. This is an important step in making
state support a practical option, both for language
users and designers.
Our contributions are:

• A novel representation for state at runtime,
which balances the demands of state change and
member access.

• A code generator and runtime for compiling
Plaid to JavaScript.

• A large speedup relative to a past Plaid imple-
mentation, and initial evidence that language-
level support for abstract state can be imple-
mented e�ciently.

In Section 2 we introduce the Plaid language and
the innovative language features it incorporates. In
Section 3 we examine related research on implement-
ing languages that allow object members to change
at runtime. Section 4 outlines the central challenges
to e�cient compilation and o�ers an overview of our
solution. In Section 5, we describe the implementa-
tion of our runtime. In Section 6, we describe the
implementation of our code generator. In Section 7,
we address some of the design issues we faced. In
Section 8, we present a validation of our work with
cross-language performance comparisons. In section
9, we consider possible future directions, and Section
10 concludes.

2 Background

We examine the motivation for incorporating state
into high-level object-oriented languages, and how it
was initially developed. We then discuss the back-
ground of the Plaid language, and brie�y present the
language features that pose new challenges for imple-
mentation.

2.1 The Motivation for State

State is an important part of how individuals interact
with objects in the physical world. A radio is powered

2

on or o�, and di�erent actions are available in those
di�erent states. A set of matter can be a solid, liq-
uid, gas, or plasma, and the current state will a�ect
how an individual interacts with it. Object-oriented
programming languages o�er analogues for other fea-
tures of objects � �elds for characteristics, methods
for actions, inheritance for specialization � but they
fail to o�er abstract state or state transitions. In-
stead, to implement a radio object, the programmer
must add state checks to each method; a check to en-
sure the radio is on before we can ask which station
is playing, or try to adjust the volume.
Many library APIs implicitly limit methods to ob-

jects in particular abstract states. For instance, the
ResultSet class of the Java JDBC library distin-
guishes between objects that are open or closed, up-
datable or not updatable, sensitive or not sensitive,
scrollable or not scrollable, and so on, the result of
which is 33 distinct abstract states [6]. This is a com-
plex state space, not easily expressed in Java, and not
easily discerned by examining the library, yet proper
use of a ResultSet object requires a full understand-
ing of the protocols. A study of open-source Java
projects revealed that protocols are pervasive even
in languages that do not provide explicit support for
abstract state [5].
The goals of explicitly supporting state abstrac-

tions are:

• To allow code to more clearly re�ect object de-
sign.

• To make code simpler and shorter by eliminating
hand-coded state checks.

• To make state change and protocols salient to
the programmer, to decrease the likelihood that
he or she will violate protocols.

• To prevent the execution of calls that violate pro-
tocols, if such calls are made in error.

2.2 The Development of Typestate

The concept of typestate was �rst introduced in a
1986 Strom and Yemini paper, in which the authors
present typestate as a re�nement of type [19]. They
state:

Whereas the type of a data object deter-
mines the set of operations ever permitted
on the object, typestate determines the sub-
set of these operations which is permitted in
a particular context.

The authors assert that type checking and static
scope checking detect some errors produced by
syntactically well-formed but non-meaningful state-
ments, but that they miss others. Speci�cally, if all
operations are type-correct, the type-checker will ac-
cept a program, even though a type-correct operation
may be unde�ned at the time when it is called.

To illustrate this failing, we consider several brief
examples. Traditional type-checking can identify the
sort of nonsense statement that produces an error
regardless of its positioning relative to other state-
ments. For instance, it is never legal to assign an
integer value to a variable that has been declared as
a boolean, and it is never legal to use a multiplica-
tion operator on a boolean. Broadly, type-checking
is su�cient when: (a) if a given statement is legal
anywhere in the scope of the relevant variables, it is
legal everywhere in that scope; and (b) if it is illegal
anywhere in scope, it must also be illegal everywhere.
However, type-checking does not identify errors such
as using a variable before it has been initialized. If
a and b are integers, the statements a = 2; and b =

a+1; are accepted by the type-checker, because + and
= are de�ned for the integer type. The type-checker
will still accept the program even if the second state-
ment appears before any value has been assigned to
a. Similarly, if a pointer p has been declared as a
pointer to some type but not yet initialized to point
to an object of that type, the type-checker will allow
a modi�cation to the data to which p points.

Because these operations are not type-
incompatible, the type-checker accepts them.
As a result, the program may copy data to a
�garbage� location in memory, the location repre-
sented by p's contents after its declaration. These
actions should not be carried out, even though the
type-checker permits them. The order of statements
� the statements' contexts � leads a and p to
be in inappropriate states at the point when these
operators are used. Speci�cally, they are not yet
initialized.

While static scope rules allow compilers to identify
the use of some variables outside of their scopes, they
provide no such help for variables that point to heap
memory. Thus, even with static scope checking in
place, some nonsense statements will go unidenti�ed.

Because this sort of error can harm even programs
that did not produce the error, and because the er-
rors can go entirely unnoticed during execution, the
authors argue that typestate errors are their own
class of failure, and a strongly undesirable one. They

3

Figure 1: A visual representation of the states and
transitions for a pointer to an object with one �eld,
data. If a user assigns to the object's data �eld be-
fore new has been used to initialize the pointer, it is
possible to corrupt data at an unknown location.

point out that even though their example execution
sequences are considered ill-de�ned, prominent pro-
cedural languages did not at the time prevent them
from running.
To address these issues, the authors introduce type-

state. Each type has a set of typestates, and in each
typestate, a number of the type's operations may be
legally applied. An object of type t is always in one
and only one of t's associated typestates. For in-
stance, an integer is always either in the initialized
or the non-initialized state, but not both. An op-
eration may change the typestate of its operands.
Thus, each operation has a typestate transition for
each operand, which includes the typestate precondi-
tion (which must be true in order for the operation to
be applicable) and one or more postconditions (which
give the operand's possible typestates after the oper-
ation). A graph in which the nodes are the typestates
and these transitions are the edges produces the state
machine graph for a given type.

Box
OpenStatus EmptyStatus

Open Empty

Closed Occupied

Figure 2: Statechart depicting the state space of
a box object. Box is an and-state, composed of
OpenStatus and EmptyStatus. OpenStatus is an or-
state; it can be in either the Open or the Closed state.

For an example, see Figure 1, which displays a very
simple state machine for a pointer to an object with
one �eld. The �gure indicates that the pointer must
be initialized before its �eld can be initialized, and
that the �eld must be initialized before it is possible
to read or update the �eld. After the �eld has been
�nalized, it is no longer possible to read or update,
and after the pointer has been �nalized, it is no longer
possible to initialize the �eld. There are thus three
states, one in which both the pointer and its �eld are
unde�ned, one in which the pointer is de�ned but its
�eld is not, and one in which both are de�ned.
The authors go on to describe a scheme for track-

ing typestate at compile-time by making typestate
a static invariant property of the program's variable
names at each point in the program.

2.3 State Composition

Many objects are composed of orthogonal regions
� di�erent dimensions which may change in vari-
ous ways without a�ecting each other. Traditional
state diagrams require creating a distinct node for
all acceptable combinations of these dimensions. To
create a box that can be either open or closed and
either empty or occupied, one would have to cre-
ate four nodes: open and empty, open and occupied,
closed and empty, closed and occupied. To combat
the exponential explosion of states that comes from
combining many dimensions, Harel introduced Harel
statecharts [13], which then formed the basis for UML
statecharts [17].
In a Harel statechart, one creates a single node for

each orthogonal region, which can change state inter-
nally without a�ecting any other orthogonal regions.
The box can go from open to closed without a�ecting
whether it is empty or occupied. Although the Harel

4

statechart is equivalent to classic state diagrams, it
reduces the number of necessary nodes and makes the
state structure more easily discernible.
In the example above, a box was composed of two

orthogonal regions, its open status and its empty sta-
tus. For this reason, the box state would be called an
and-state. An and-state may be composed of two or
more independent dimensions. An object that is in
an and-state is simultaneously in all the orthogonal
regions that compose the and-state.
Harel and UML statecharts also modify �nite state

machines by introducing hierarchically nested states.
For instance, open and closed would be nested states
� or substates � of open status. If an object is in
one of those nested states, it is also necessarily in the
superstate, open status. For an object to be in both a
substate (open) and superstate (open status) means
that a member access on the object would �rst be
passed to the more specialized substate. If the sub-
state could not handle the member access, it would
be passed to the superstate, facilitating easy behav-
ior reuse, whereas the same behavior would have to
be associated with many nodes in traditional state
machines. A substate may itself have substates, and
the nesting can be as deep as a state space requires.
A state may have many specializing substates in

the hierarchical model, but an object may be in only
one of those substates at any given time. That is, a
box object may be in either the open or the closed
state. For this reason, a state with specializing sub-
states is called an or-state.
Figure 2 displays the state space for the box object.

In UML statecharts, an or-state's specializing sub-
states appear as state machines within the or-state's
rectangle. An and-state's orthogonal regions appear
within the and-state's rectangle, separated by dotted
lines.
Statecharts' support for orthogonal regions pro-

vides an answer to the state and transition explosion
problem. The and-state support means eliminating
the need to mix behaviors from multiple dimensions,
which do not a�ect each other. It allows a box in
the closed condition to share the same open method,
regardless of whether the box is full or empty, and
regardless of how it may vary on many other dimen-
sions.

2.4 The Plaid Language

Recall the �le object with which the paper opened.
In Listing 1, simple Plaid[20] code lays out the de-
sign of a File state, whose state space is depicted in

File

ClosedFile OpenFile

Figure 3: Statechart depicting the state space of a
simple �le object.

Figure 3. In Plaid, every object is created as an in-
stance of a state. A state is like a class in a more
traditional object-oriented language, except that a
state can change. OpenFile and ClosedFile, de-
clared with the case of keyword, are substates of
File. Method close makes transitioning between
states � and altering the available members � sim-
ple and intuitive. It uses the <- operator to enact
state change and shift the object on which it is called
from the OpenFile to the ClosedFile state. Method
open performs the opposite change.

1 state File {

2 val filename;

3 }

4 state OpenFile case of File {

5 val filePtr;

6 method read() {}

7 method close() { this <- ClosedFile;}

8 }

9 state ClosedFile case of File {

10 method open() { this <- OpenFile;}

11 }

Listing 1: Plaid declaration of File state with two
case of states, OpenFile and ClosedFile.

1 method readClosedFile(f) {

2 f.open();

3 val x=f.read();

4 f.close();

5 x;

6 }

Listing 2: Using the open and close methods de�ned
in Listing 1.

From Listing 2, it becomes clear how explicit
typestate support simpli�es code. No state checks
or error handling appear in the method, and none
are necessary. Passed a closed �le, the method

5

readClosedFile will succeed. Passed an open �le,
the call will fail with an error, because there is no
open method in OpenFile.
While such an improvement may seem trivial in

the case of a �le with two case of states, consider
a larger example, such as the car object whose state
space appears in Figure 4. More complex examples,
such as the ResultSet interface in the Java Database
Connectivity library would gain even more from the
ability to clearly distribute an object's functionality
between its abstract states.
Whether in the case of a simple �le or in ob-

jects composed of six states simultaneously, or nested
states, the practice of maintaining implicit state in-
formation is pervasive in program design. This prac-
tice motivates the design of languages that provide
easy ways to model state, and the potential advan-
tages are substantial. Introducing abstract states and
explicit state change results in code that more clearly
depicts object structure, code that makes the pro-
grammer's intent more obvious to a viewer. Explic-
itly naming states and the transitions between them
makes those transitions salient to the programmer,
ideally reducing the number of bugs introduced by
failing to follow forgotten protocols. State support
eliminates the need for hand-coded state checks, thus
reducing the time spent producing boilerplate, and
resulting in neater, more compact programs. Fur-
ther, while a programmer might forget to write state
checks for a particular �eld or method, all members
are necessarily associated with a state in Plaid. If
a member is accessed in the wrong state, the run-
time automatically throws an error, preventing the
data corruption that could result from a protocol vi-
olation. Recall Strom and Yemini's examples of a
pointer assignment that will simply overwrite data in
a �random� memory location. Without support for
abstract state, this corruption occurs silently, maybe
without the programmer's knowledge, and de�nitely
without any aid to the programmer in his or her de-
bugging e�orts. With language support for state ab-
straction, this state-inconsistent call will instead pro-
duce a helpful error message.

2.4.1 Joining State and Composition

Plaid distinguishes itself from prominent modern lan-
guages by its facilitation of both abstract state and
trait-like state composition primitives. Plaid's state
abstractions, like Strom and Yemini's typestate [19],
allow an object's type to re�ect its current state.
Plaid joins this state change support with a model of

Car
DrivingStatus CleanStatus

DirectionStatus

Clean

Dirty

Driving

NotDriving

BrakingStatus

Braking Straight Left

Right NotBraking

Figure 4: Statechart depicting the state space of a
complex car object. In Plaid, the code state Car =

DrivingStatus with CleanStatus would be used
to generate the Car and-state, once DrivingStatus

and CleanStatus are de�ned. The line Braking

case of BrakingStatus would begin the de�nition
of the Braking state, a specializing substate of
BrakingStatus.

state composition that allows the language to express
any state space that could be represented with state-
charts, like Harel's[13] or UML state machines[17].
With state composition primitives reminiscent of
trait model [11] composition constructs, any Plaid
state can be used as an independent dimension in
another Plaid state.
The initial motivation for Plaid, and an outline of

possible features, were described in a work on the
Typestate-Oriented design paradigm[3]. A later pa-
per presented the motivation for a state change op-
erator that can change one dimension at a time[2].
More recently, the creators of the language o�ered
a solution to that problem and presented the formal
semantics of the Plaid language[20].
Statecharts' and-states are created in Plaid using

the with operator, which composes two states. A
Plaid state may be declared as a specializing substate
of another by using the case of keyword. Thus,
Plaid can be used to model both and-states and or-
states, and can therefore represent any state space
that can be modeled with a statechart.
For example, consider the Plaid code in Listing 3

that declares the car state space pictured in Figure 4.
The Plaid code in Listing 3 contains all the informa-
tion necessary to construct a statechart for the Car

6

1 state BrakingStatus{}

2 state Braking case of BrakingStatus{

3 method stopBraking() {}

4 }

5 state NotBraking case of BrakingStatus{

6 method startBraking() {}

7 }

8

9 state DirectionStatus{}

10 state TurningLeft case of DirectionStatus{

11 method turnStraight() {}

12 method turnRight() {}

13 }

14 state Straight case of DirectionStatus{

15 method turnLeft() {}

16 method turnStraight() {}

17 }

18 state TurningRight case of DirectionStatus{

19 method turnLeft() {}

20 method turnStraight() {}

21 }

22

23 state DrivingStatus =

24 BrakingStatus with DirectionStatus

25 state Driving case of DrivingStatus{

26 var speed;

27 var acceleration;

28 method stopDriving() {}

29 }

30 state NotDriving case of DrivingStauts{

31 }

32

33 state CleanStatus{}

34 state Clean case of CleanStatus{

35 method getDirty() {}

36 }

37 state Dirty case of CleanStatus{

38 method getClean() {}

39 }

40

41 state Car = DrivingStatus with CleanStatus

42

43 method main() {

44 var car = new Car;

45 car<-Braking;

46 car<-TurningLeft;

47 car<-Clean;

48 }

Listing 3: The Plaid code to declare the car state
depicted in Figure 4.

state. Car is an and-state, because it has two orthog-
onal regions � DrivingStatus and CleanStatus �

which are de�ned separately, and can themselves be
used as normal Plaid states. Line 41 (state Car =

DrivingStatus with CleanStatus) uses the with

operator to create the Car state from its two indepen-
dent dimensions. In contrast, DrivingStatus and
CleanStatus are or-states. Note that Driving and
NotDriving are both declared using the case of key-
word, indicating that they are specializing substates
of DrivingStatus.
The next step is to establish what methods are

available to each state. An object in a specializing
substate can use all the methods and �elds de�ned in
its superstates. Thus, an object in state Driving has
access to any members available to Driving as well
as the members declared in DrivingStatus. All and-
states have all the methods and �elds of their com-
ponent states. Thus an object in state Car will have
access to all the members of both DrivingStatus and
CleanStatus.

2.4.2 State Change

Consider the case where a user initializes a Car

object in the Driving, Braking, and TurningLeft

states. If one were to shift from the Driving

to the NotDriving state, it is not only Driving

that would disappear, but also BrakingStatus,
DirectionStatus, Braking, and TurningLeft.
Driving and NotDriving are substates of the same
or-state, and therefore cannot coexist.
In the main function in Listing 3, we use the Plaid

Car state to create a Plaid Car object. The code that
follows uses the state change operator <- to make
the object represent a Car that is Clean, Braking,
TurningLeft, and Driving (implied by Braking and
TurningLeft).
Plaid's formal semantics[20] o�er a precise proce-

dure for state change. See Figure 5 for a formal de-
scription of how a Plaid implementation must handle
state update.
The relevant portions of Plaid's core syntax (de-

scribed in [20]) are:
Obj Val ov ::= mv

∣∣ dv ∣∣ mv 7 ov
∣∣ dv 7 ov

Dim Val dv ::= tag { ov }
∣∣ tag { ov } <: dv

Mbr Val mv ::= m(x){e}
∣∣ n = v

In this syntax and in Figure 5, ov represents
an object value, which is a list of mv (member
values) and dv (dimension values). Member values
simply represent methods and �elds associated with
a given state. Dimension values take the form
tag{ov}[<: dv]. The tag is the unique name for

7

ov < −ov => ov

ovt < −ov => ov′ ov′ < −ovu => ovo

ovt < −ov 7 ovu => ovo
SU-List

ovt < −mvu => ovt 7 mvu
SU-Mv

(ovt) ∩ (dvu) = ∅ (dvu)

ovt < −dvu => ovt 7 dvu
SU-AddH

(dv) ∩ (dvu) 6= ∅
dv < −dvu => dvr
(ov) ∩ (dvr) = ∅

ov 7 dv < −dvu => ov 7 dvr
SU-MatchDim

(dvu) ∩ (ov) 6= ∅ ov < −dvu => ovr
[(dvu) ∩ (dv) = ∅] tag 6∈ (dvu)

tag{ov}[<: dv] < −dvu => tag{ovr}[<: dv]
SU-MatchInner

(dvu) ∩ (dv) 6= ∅ dv < −dvu => dvr
(tag{ov}) ∩ (dvu) = ∅

tag{ov} <: dv < −dvu => tag{ov} <: dvr
SU-MatchSuperInner

tag /∈ (dvu) (dvu) ∩ (dv) 6= ∅ dv < −dvu => dvr

tag{ov} <: dv < −dvu => dvr
SU-MatchSuper

dvu = [dvsub] <: tag{ov′} <: [dvsup] [(dvsub) ∩ (tag{ov}[<: dv]) = ∅] (dvsub)

tag{ov}[<: dv] < −dvu => [dvsub] <: tag{ov}[<: dv]
SU-Match

Figure 5: The formal semantics for Plaid state update, as presented in [20].

the most specialized state in the dimension. The
ov represents all the members de�ned by the tag
state, and also all the other states that compose
the tag state � that is, all the dimensions of an
and-state. The symbol 7 appears between these,
to indicate that they are composed. A dimension
value may also contain another dv (the [<: dv] part
of tag{ov}[<: dv]), which indicates that the tag state
specializes the or-state dv. Thus, we would represent
a File in the OpenFile state as:

OpenFile{ close(){...}, read(){...}} <:
File{ filename = v}

The formal semantics in Figure 5 appear in the
form of inference rules. The premises appear above
each rule's line; if the premises hold, we may draw
the conclusion below the line. The inference rules
in Figure 5 concern the state update judgment, ov <
−ov => ov. The judgment accepts two object values,
target before the state update arrow (<-) and update
immediately after the state update arrow. The judg-
ment determines the object that results from enacting

state change from target's state to update's state.

To determine the object that should result, we
must �rst identify the dimension that is being altered.
For instance, if the object box is in the Open state, up-
dating the state of box to Closed <: OpenStatus

should a�ect the OpenStatus dimension but not the
EmptyStatus dimension. The OpenStatus tag is
a dimension within the Box tag, but state update
should still identify the OpenStatus state in object
box and change its specializing substate from Open

to Closed. Only dimensions at the top level of the
update ov can be altered with state change. Thus, up-
dating box to NewState {Closed <: OpenStatus}

would not a�ect box's OpenStatus dimension, be-
cause OpenStatus is a dimension of NewState �
it is not at the top level. In fact, updating box

to NewState {Closed <: OpenStatus} would fail
because state update would add the new dimension
NewState, and OpenStatus would appear twice in
box's state hierarchy, which is disallowed in Plaid's
semantics.

State update maintains two important properties.
First is the unique dimension property, which requires

8

that a state either has no supertag or is always under
same supertag. That is, it can only appear in a single
dimension. The other essential property is the unique
tag property. This property requires that a tag ap-
pear only once in a given object's state hierarchy.
Inference rule SU-List divides the update ov into

its component dimensions, each of which may be han-
dled individually, since dimensions are independent.
If the state update is only adding members (for

instance, in the statement box <- {val color =

"brown"}), we compose the target and update ob-
jects to produce the output object. This is rule SU-
Mv. If there is no overlap between the tags in the
target and update state hierarchies, we again simply
compose the two objects to produce the output ob-
ject. This is SU-AddH. All other rules apply only if
there is a match between the tags of target and the
top level tags of update.
We apply SU-MatchDim when we have found the

dimension of target that will be updated. Because an
update tag has been matched in the relevant dimen-
sion of target, the unique dimensions property allows
us to conclude that the top level tags of dvu will not
appear in ov. Therefore, state update can proceed on
only the relevant dimension of target (dv). To ensure
we do not violate the unique tags property, we must
check that the tags of the state change result (dvr)
and the tags of the unmatched part of target (ov) do
not intersect, because the unmatched dimensions will
appear in the �nal object.
We apply SU-MatchInner when one of the di-

mensions (ov) of the current tag in target matches
a top level tag in update. When this is the case,
we can proceed with state update by enacting state
change on only the matching tag in target. To en-
sure we maintain the unique tags property, we make
sure there is no overlap in the tags of any of target's
supserstates(dv) and the tags being introduced by the
new dimension of update (dvu), because target's su-
perstates will appear in the result object.
We apply SU-MatchSuperInner when a top

level tag in update matches a dimension of a super-
state of target. When this is the case, we can proceed
with state update by enacting state change only on
the superstates of target (dv). To uphold the unique
tags property, we ensure there is no overlap between
the current tag of target (tag) and the tags in the
relevant update dimension (dvu), because the current
tag of target will appear in the result object.
We apply SU-MatchSuper when we have identi-

�ed the correct dimension, but have yet to reach the

level where we �nd a match. The current tag (tag)
is not in update (dvu), but there is a match between
tags in the superstates (dv) and the tags in the rel-
evant update dimension (dvu). This is a case where
we know the current tag will not appear in the re-
sult object, since it does not appear in update, but a
parent tag does. Thus, enacting state change on just
target's superstates (dv) will yield the result object
(dvr).
Finally, SU-Match applies when the current tag

(tag) matches a tag in the top level tags of the rele-
vant update dimension (dvu). All child tags that did
not appear in the update object have already been
discarded by SU-MatchSuper. Thus, we identify
any substates that specialize the current tag (tag) in
update. These substates (dvsub) are then added to
the result object. No other aspect of the current tag
or its superstates is altered, so to ensure the unique
tags property holds, we must con�rm there is no over-
lap between the current tag plus its superstates' tags
(tag{ov}[<: dv]) and the tags of the new substates
(dvsub).
These inference rules lay out precisely how a Plaid

implementation must execute state change. They de-
termine exactly what information a runtime represen-
tation of state must store. Speci�cally, any state rep-
resentation must store complete information about:
every state's tag; every state's component dimen-
sions; every state's superstates and specializing sub-
states; and, in order to add and remove states, the
members associated with each state.
Designing a representation that e�ciently ful�lls

these requirements and implementing state change in
accordance with the state update semantics are the
novel challenges of compiling Plaid.

3 Related Work

In this section we consider how other work � in-
cluding another implementation of Plaid � has fa-
cilitated object reclassi�cation. We discuss the e�-
ciency implications of using their methods to imple-
ment Plaid's state change.

3.1 Implementing State Support

When Strom and Yemini �rst introduced their type-
state checking scheme, they embedded typestate in
the NIL language [19]. NIL is not an object-oriented
language, and the use of typestate was motivated
by the need for safe data structures, which would

9

not corrupt other programs running on the same sys-
tems. As the method they developed was aimed at
checking typestate statically, the new demands of in-
corporating state in a language were all handled in
the compiler. Later, the creators of the Fugue sys-
tem would incorporate typestate into their object-
oriented language [9]. That language, coupled with
its static typestate system, formed the basis for the
Fugue tool. The tool itself was used as a typestate
checker for languages that compile to .NET. As we
were interested in creating an implementation for a
dynamically typed version of Plaid, we do not con-
sider the NIL or Fugue implementations further.

Some languages o�er explicit state manipulation
without o�ering any inspiration for a Plaid imple-
mentation scheme. This is most often the case in lan-
guages that implement restricted forms of object re-
classi�cation, such as Taivalsaari's modes [21]. In his
class-based languages, object interfaces have modes,
each of which is explicitly de�ned and can provide
its own mode-speci�c versions of object members.
A transition function controls shifts between modes,
and updates speci�c mode instance variables that are
used to track state. However, Taivalsaari's model
does not allow for de�ning di�erent members in dif-
ferent states, but only for changing the de�nitions
of a stable set of members. This restriction alone
prevents his model from forming the basis of an im-
plementation of Plaid's state change.

Dynamic languages like Self [22] and Smalltalk [16]
provide mechanisms for modifying an object's class
at runtime. Self is a prototype-based language that
permits directly adding or removing members during
execution, and also allows the programmer to desig-
nate one or more slots as parent slots. Like other
slots, any or all of an object's parent slots can be
mutable [7]. When a message is passed to the object,
the receiver �rst searches for a slot of that name. If
it fails to �nd one, it passes the message to the ob-
jects in its parent slots, and so on recursively. This
allows the construction of complex inheritance hier-
archies. Within Self, all assignable slots (for instance,
the assignable slots included to implement dynamic
inheritance) are stored with each clone of a prototype.
Therefore, changing an object's state by reassigning
to an assignable parent slot does not alter any other
object, even in its clone family. State change can be
mimicked in Self by reassigning to a parent slot.

To use the Self model as a way of implement-
ing abstract state and abstract state change, our
compiler would generate an object for each state in

Car's state hierarchy. In the case of the Car ob-
ject, that would mean an object for Braking, one
for BrakingStatus, one for Driving, and so on
up to the top level Car object. DrivingStatus

and CleanStatus would be in parent slots of Car,
Driving would be in a parent slot of DrivingStatus,
BrakingStatus and DirectionStatus would be in
parent slots of Driving, and so on down to the most
specialized states. Thus, the Car state could in-
herit methods from all these other states. To access
a method like stopBraking(), which is a member
of the Braking state, the message would be passed
�rst to the Car object, then to one of its parents
� DrivingStatus or CleanStatus � then to the
parents' parents, until the Braking object, where a
match is �nally found. To enact state change from
the Braking to the NotBraking state, we would start
at the Car object, search the parents until identify-
ing the BrakingStatus state, then change its par-
ent from Braking to NotBraking. While using Self
parent slots to hand-code state change for a par-
ticular state space is unwieldy, it is a viable model
for compiling from a language with abstract state to
a language without it. This Self-inspired model of
grouping state-speci�c behavior represents perhaps
the most intuitive way to facilitate easy state change.

In Smalltalk, an object's state can be modi�ed us-
ing the become method. While Smalltalk-72 used
direct memory addresses and reference counting to
store objects, and Smalltalk-76 used bits of the ob-
ject pointer to encode class information, Smalltalk-78
introduced the use of an indexed object table. This
facilitated the new become primitive, which simply
swapped the contents of two objects' object table
rows. Consider the situation where a1 and a2 point
to the same object as a, where a := 'a', and b1 and
b2 point to the same object as b, where b := 'b'.
The statement a1 become: b1 would result in all
of a, a1, and a2 pointing to the string 'b', while all
of b, b1, and b2 point to the string 'a'. The underly-
ing mechanism in this case is as simple as exchanging
the entries in a table.

The Smalltalk model does not lend itself well to
a Plaid state change implementation. Using a class-
swapping method to implement state change would
mean having to use an object with exactly the in-
tended state structure of the receiver. Because Plaid
allows state composition, it is not only a matter of
keeping a class for each of the four possible Box state
combinations; it is also necessary to keep a class for a
Box with an additional dimension � with any addi-

10

tional dimension, in fact. The code generator cannot
feasibly generate objects with all possible classes be-
cause Plaid objects can be composed dynamically.

The State design paradigm o�ers a potential state
change implementation scheme [12]. In the State de-
sign pattern, programmers construct multiple di�er-
ent classes to implement a single conceptual class.
This approach means di�erent states must copy wrap-
per class interfaces, leading to extensive fragile code
duplication. While this is unpleasant for program-
mers, it would not be an obstacle for a compiler
which generates those interfaces automatically. The
State design pattern is also criticized for transfer-
ring consistent non-state-speci�c data between dif-
ferent objects. For instance, changing a File from
the OpenFile to ClosedFile state in a State design
implementation would mean passing filename to the
new ClosedFile object. This is non-ideal even in an
implementation setting, but it may not be a tremen-
dous obstacle.

Looking to the Fickle language implementation [4],
we see an approach that in fact looks very similar to
using the State design paradigm to implement lan-
guage support for state change. The originators of
the Fickle language [10] created a translation of Fickle
into Java [4]. To accomplish this, they represented
each Fickle object with a pair of Java objects, where
one object was a wrapper (the interface for the ob-
ject), and the other was an implementor. The imple-
mentor handles member accesses, and can be changed
to re�ect the state at any particular time. For any
wrapper-implementor pair < w, i >, the class of i
must be a proper subclass of the class of w.

Ultimately, however, a Plaid implementation that
takes its inspiration from the State design paradigm
would encounter the same problem as an implemen-
tation that takes its inspiration from Smalltalk. To
enact state change, the runtime would need a class
that re�ects exactly the intended end state of the re-
ceiver. This is possible in Fickle only because it lacks
Plaid's state composition operators.

Cohen and Gil [8] promote object evolution, a re-
stricted version of state change in which an object
may gain but never lose members. They introduce
the idea of an evolver which � like a constructor
� has the responsibility of initializing new members.
The evolver initializes members that appear in only
some instances of a class.

Cohen and Gil consider three alternative methods
for adding new data members to objects that are al-
ready on the heap [8]. Their �rst solution is to use for-

warding pointers. In this scheme, there are no direct
pointers; rather, each pointer stores the location of a
forwarding pointer, which is itself a pointer to the ob-
ject. If the object is reallocated in memory to accom-
modate new members, it is su�cient to modify the
forwarding pointer. Their next solution is to run a full
memory compaction every time an evolution is en-
acted. Compaction then completes the work of mov-
ing objects in memory, and the newly evolved object
can be assigned to a location with su�cient space.
Their �nal solution uses objects as proxies. In this
scheme, all objects have a �eld called newRef, which
is null until the object is evolved. When newRef is
not null, all member accesses on the object are for-
warded to the object stored in newRef. These imple-
mentation methods again suggest an implementation
scheme like the Smalltalk and State design paradigm
scheme, in which the compiled Plaid code must have
access to an appropriate class for any state change or
composition the programmer may want to execute.
The problem of state change is again reduced to the
problem of constructing a new class at runtime.

All these solutions that involve using one object
rather than a tree of objects raise questions about
how to identify the receiver's current state, and how
to use it to identify the appropriate end state. Even
in the Cohen and Gil implementations, where mem-
bers are added in evolutions and could be associated
with those evolutions, their solution is always to have
one object with all the members. Because their ob-
ject evolution never removes members, they never ad-
dress the question of how to reverse an evolution, or
replace one evolution's e�ects with another's. This is-
sue is central to any implementation of Plaid, which
must be able to identify not only which states to add,
but also which states to remove � calling open on a
closed �le should add OpenFile state, but it should
also remove the ClosedFile state. The Smalltalk
family of solutions o�ers no insight into appropriate
ways to identify objects' and states' current state hi-
erarchies, or how they should be combined during
state change.

In the Actor model, state can be manipulated in
several ways[15][1]. Each time an actor receives a
message, it determines its response to future mes-
sages. A change in response may be as simple as
updating state variables. This is the same sort of
state change that many object-oriented languages
permit. For instance, reducing a bank account bal-
ance changes the behavior of the withdrawal function,
because the function will allow less money to be with-

11

drawn. However, Actor-based languages also allow
actors to change the procedures that will respond to
future messages. To some extent, this resembles the
sort of state change that can be enacted in languages
with �rst-class functions.
The ability to alter how the same method call

behaves at di�erent points during program execu-
tion is very important in implementing Plaid's state
change. It is important that f.read() produce a dif-
ferent result when it is called on an OpenFile and a
ClosedFile, and changing or removing the method is
one way to accomplish that. However, the Actor lan-
guages' replacement behaviors and other languages'
�rst-class functions provide no guidance for how to
group sets of behaviors that should be associated with
particular states. Given the ability to alter methods,
what is the best way to identify and remove all the
members associated with Braking, then identify and
add all the members associated with NotBraking?
From several of the last examples, it is clear that

the challenge of implementing Plaid's state change
is ultimately traced to the challenge of being able to
create an appropriate class. Changing method behav-
ior may not by itself suggest a fully �edged scheme
for implementing state change, but it could be an
important tool for building objects with all the func-
tionality an object should have after state change.

3.1.1 The Java Implementation of Plaid

The �rst implementation of Plaid compiled Plaid to
Java. The general approach of that implementation
was to maintain a map of each object's members in
the Java runtime. Each method is represented by an
object with an invokemethod that contains the body
of the function. Member access in the source code
produces Java code that calls the runtime's lookup

method, passing in the name of the member, and the
string that represents the relevant object or scope
� that is, the Java object that represents the Plaid
object.
Within the runtime lookup function, the object's

map of members is identi�ed. Next, the function
searches for the name of the passed in member. If
it �nds the member, it returns it, and the invoke

method can be called on the returned object. If it
does not �nd the member, it identi�es the parent of
the current object (if one exists), and checks the par-
ent object for a matching member that the substate
inherits. This process is repeated until the member
is found, or until there are no more states to check.
The result is that method calls and �eld reads re-

quire traversing a collection of states to check for the
relevant member and searching a number of objects'
member maps, because each state is represented by
a collection of objects with collections of members.
Each object also has its own map of members which
is searched �rst. If a member's value is speci�c to the
current instance, it is stored in this object map. For
example, if an object is created with the Plaid code
A{val a=1;}, the object is an instance of the state
A, but with the value of �eld a changed to 1. The
value of a would thus be stored in the object's own
map, since it should override any assignments to a

that appear in states composing the object's state.
State change in this implementation is accom-

plished by adding and removing state objects from
a Java object's collection of state objects. The ap-
propriate states to add and remove are determined
by storing a hierarchy of tags, and associating each
state object with its tag.

4 Implementing State and State

Change

The central challenge for a Plaid compiler and run-
time is to enable fast state change and fast member
access for a shifting set of members. While maintain-
ing state and permitting state change is useful from
the perspective of a programmer, the challenges for
implementation are signi�cant. If an object's mem-
bers do not change, there is never a need to allocate
additional space for an object that has already been
declared. More importantly, a stable set of members
means there can be a standard, consistent way to
access particular members throughout program exe-
cution, for all instances of a given class. Thus, ef-
�cient language implementation has traditionally re-
quired that every object have a stable set of members
throughout its life cycle. However, state is a useful
abstraction only if it is accompanied by state transi-
tion � and state transition allows members to change
at runtime.
The key requirement is that given the runtime rep-

resentation of a state s and the runtime represen-
tation of an object o, the runtime must be able to
transition o into state s in accordance with Plaid's se-
mantics. To accomplish this, any representation must
store, in some format: the tags of all the states that
compose the state of o, those states' relationships to
each other, the members associated with each state,
and the values and method bodies of those members.

12

These data may be accessed for method calls and
�eld reads, and also to enact state change. The core
challenge for our implementation is to �nd a way to
store these data that both enables state change and
facilitates fast member access.

4.1 Intuitive Approaches

To date, implementations of object reclassi�cation
generally suggest the same intuitive representation
for state at runtime. The intuitive representa-
tion entails maintaining a target language object for
each state and substate: one for File, another for
OpenFile, another for ClosedFile. The object for
each state would keep track of �eld values and method
bodies that it de�nes, and another �eld would store
the state's tag. Pointers between state objects would
be su�cient to track substates' relationships to each
other. State change would demand nothing more
than changing a few pointers. Adding and removing
states would be as simple as adding and removing
nodes in a tree.
Although this pointer manipulation approach

makes state change easy, consider that a �le will
commonly be opened once, read many times, and
closed once. It is easy to bring to mind many sim-
ilar examples, and it is a rare program that will
require more state transitions than method calls or
�eld reads. This being the case, fast member access
is essential to a fast implementation. In the intu-
itive approach above, a call to close() would re-
quire �rst searching the File object for the desired
member, then the OpenFile object, before �nding
the appropriate method. The runtime would have
to traverse an entire network of state objects until
it �nds one that stores the desired member. While
this may not greatly a�ect execution time in the case
of a simple File object, consider the complex Car

state pictured in Figure 4. The process for �nding
the stopBraking() method of BrakingState would
require a search through �ve to nine objects in the
state hierarchy.
Aside from prioritizing state change over the

more common method access, this intuitive approach
makes the execution time of member access depen-
dent on how a state is composed � more component
states and more substates would increase overhead.
This discourages the use of Plaid's novel state ab-
stractions. It is clear that keeping a tree of compo-
nent objects will not produce an e�cient implemen-
tation.
A second intuitive approach would involve simple

state checks. State checks could be used to mimic
Plaid's state change in almost any high-level lan-
guage. While it would be unpleasant to manually
code all the state checks required for a complex Car

state, a Plaid compiler could automate the process.
State variables would store the current states, and
the runtime would use state checks to identify the
appropriate response to a member access.
This implementation su�ers from the same �aws

that plagued the earlier intuitive approach: �rst and
most importantly, it slows member access, requiring a
series of state checks before each member access; sec-
ond, member access time would depend on the depth
of the state hierarchy.
The naive approaches above highlight a central im-

plementation challenge: maintaining all the necessary
information (all states, their relationships to each
other, their associated members) and manipulating
state appropriately (adding and removing states, spe-
cializing, composing), while still enabling quick mem-
ber access. By packaging all of a substate's infor-
mation into a node in a state hierarchy tree, an im-
plementation scheme sacri�ces fast method calls and
�eld reads. By keeping state information in simple
state variables and necessitating state checks, an im-
plementation scheme sacri�ces fast method calls and
�eld reads. There is an unavoidable trade o� between
the simplicity of state mutations and the speed of
member access.

4.2 An Outline of Our Solution

Our implementation o�ers a new representation for
state at runtime. Our representation ensures fast
member access and stores state information in a form
that should facilitate future state change optimiza-
tions. We use this representation to implement a
JavaScript compilation target, which consists of a
Plaid to JavaScript compiler and a JavaScript run-
time.
The essential features of our runtime representa-

tion are:

• It takes exactly one JavaScript object to repre-
sent each Plaid object.

• A Plaid object's one corresponding JavaScript
object contains only the Plaid object's currently
available members, which depend on its state.

• Each Plaid object's corresponding JavaScript ob-
ject includes a metadata element, which en-

13

codes all the information necessary for perform-
ing state change on the object.

The goal of our representation scheme is to �nd a
way to keep member access fast, even though mem-
bers may change during execution. The need for fast
method calls and �eld lookup motivates the central
restriction we placed on our implementation: any
member of a Plaid object must be a member of a
single corresponding target language object.
To comply with this restriction, we developed three

requirements.
All Available Members in Target Object. If

target language object f represents plaidF, a Plaid
File object, all members available to plaidF at a
given point in the program's execution should be
available to f at that point.
No Unavailable Members in Target Object.

When attempting to access a member of plaidF that
is not available at a given point in the program's ex-
ecution, the member should also be inaccessible in f.
That is, the runtime should not perform any state
checks before allowing a �eld read or method call.
No Indirection. There should not be any layers

of indirection to slow a �eld read or method call.
Taken together, these requirements mean that the

members of f at any given point during execution
should be the exact analogue of plaidF's members
at that point. A call to read should produce the code
f.read() in the compiled code, rather than trigger a
search through File and OpenFile objects.
To follow these requirements, it must be possible

to add and remove members at runtime from an ob-
ject in the target language. This motivates our use
of JavaScript, which is prototype-based and supports
�rst-class functions. Using JavaScript allows us to
build a runtime that manipulates object members
during execution. With JavaScript's �rst-class func-
tions, it is trivial to copy all the members of an ob-
ject's component states and substates to a single ob-
ject.
Flattening the object representation � that is,

storing all of a Plaid object's members in a single
target language object � means that none of the
state-related information is encoded in the object
structure. With all of File's members and all of
OpenFile's members in a single JavaScript object,
there is no clear way to distinguish between File and
OpenFile methods, which complicates state change.
To solve this problem and store all the information
needed to enact state change, we introduce a meta-
data item. The metadata item is a tree encoding

all of a Plaid object's states, their relationships to
each other, their tags (unique names) if they have
any, and the state with which each member is as-
sociated. This information is su�cient for applying
Plaid's state change semantics to an object. Each
JavaScript representation of a Plaid object contains
a metadata item.

4.2.1 JavaScript

We use JavaScript as our target language for sev-
eral reasons. First, as web programming becomes
more and more common, and more appealing even to
non-programmers, it is essential to produce languages
that novices will �nd natural and intuitive. To the ex-
tent that Plaid simpli�es the use of state and reduces
the potential for confusion surrounding implicit pro-
tocols, compiling Plaid to JavaScript should advance
that goal. Our implementation makes it trivial to ex-
tend Plaid programs with JavaScript libraries, vastly
expanding the immediate uses of the language. Ulti-
mately, the ability to use Plaid for web programming
could make it useful to a large population.

Second, well-optimized JavaScript engines such
as V8 [23] and SpiderMonkey [18] continue to re-
duce JavaScript execution time. While the speed of
JavaScript virtual machines in the past might have
made a JavaScript compiler quite ine�cient, their
continual improvement means a JavaScript imple-
mentation of Plaid may be relatively fast.

Finally, JavaScript's primary appeal lies in its ap-
proach to objects. Compiling a language that sup-
ports state change to a language without state change
does not necessarily require adding or removing mem-
bers at runtime. However, if we add the requirement
that the set of tl's members match the set of p's
members, the ability to dynamically change object
structure becomes a prerequisite. JavaScript's �exi-
ble object model allows easy addition and removal of
members. Its support for �rst-class functions allows
our runtime to manipulate an object's methods dur-
ing execution. The combination yields a relatively
straightforward way to build up an appropriate ob-
ject from information stored in other JavaScript rep-
resentations of Plaid objects and states. Creating an
object from other objects' data is exactly what the
runtime must accomplish to carry out state change.
Thus, JavaScript o�ers a fairly clear and intuitive way
of expressing the individual modi�cations required for
state change.

14

4.2.2 Metadata and State Change Procedure

The metadata item is a JavaScript tree representing a
Plaid object's state hierarchy. Each node in the tree
represents one of the object's current states. The
node contains the state tag, if there is one, and the
names of all members associated with the state. Each
node also tracks whether the node is a specializing
substate of the parent state (declared using case of),
or whether it is a component (added using with). To
enact state change, the JavaScript runtime compares
the metadata item of the object to be changed and
the metadata item of the update state.
For instance, Figure 6 shows a visual represen-

tation of the metadata for a Car object. Car

is an and-state, composed of DrivingStatus and
CleanStatus. DrivingStatus is an or-state, and the
object is currently in the Driving state, which spe-
cializes DrivingStatus.
Traversing the trees of the target and update ob-

jects reveals how to apply Plaid semantics to any
given state change call. The trees are used to iden-
tify which states, if any, should be added or removed
from the object. Following state change, the meta-
data is updated to re�ect the new set of states. For
instance, in our car example, if an object car is in
the NotBraking state, the code car<-Braking should
change the JavaScript metadata from the tree in Fig-
ure 6 to the tree in Figure 7. The NotBraking node
is removed, and a Braking node is added.

Figure 6: The metadata for a Car object
with and-states Car and Driving, and or-states
DrivingStatus, BrakingStatus, DirectionStatus,
and CleanStatus.

4.2.3 Metadata and Member Access

Next, consider how the use of a metadata item af-
fects how we can access object members. The key

Figure 7: A visual representation of how the
JavaScript metadata for a Car object should change
when it is transitioned from the NotBraking state
to the Braking state. The tree in Figure 6 shows
the metadata before the state change. This �gure
shows the metadata after the state change. The
NotBraking node has been removed, and the Braking
node has been added.

reason for developing a new representation scheme
for state at runtime was to permit all of a Plaid ob-
ject's members to be maintained as the members of
a single target language object. If the member is in
fact valid, its location is immediately known without
the need to search through a tree of state objects,
without any form of lookup function.

To ensure fast member lookup is always possible,
every �eld and method is added to the JavaScript
object at its creation. When the process of state
change reveals a set of states to be removed, the
members associated with those states are identi�ed
from the object's metadata, and those members are
removed from the JavaScript object. When the pro-
cess of state change reveals a set of states to be added,
the members associated with those states are identi-
�ed by examining the metadata of the state object.
The state object's values for those members are then
copied over to be members of the object undergoing
state change. The result is that at any point during
execution, the JavaScript representation of a Plaid
object has all of the �elds and methods available to
the Plaid object at that point, and it does not have
any additional �elds or members. Figure 8 shows a
visualization of all the changes that would occur in
the JavaScript object representing a Plaid Car ob-
ject when it is transitioned from the NotBraking to
the Braking state; this transition illustrates how the
object's member set is kept up to date.

With this approach, our implementation scheme

15

JavaScript Object Before State Change

JavaScript Object After State Change

Figure 8: A depiction of the changes to the JavaScript
object representing a Plaid Car instance when it is
transitioned from the NotBraking to the Braking

state. The top item shows the object before state
change, and the bottom item shows the object after
state change. The metadata changes as it changed in
Figure 7. However, here we also see that the meth-
ods stored with the JavaScript object change. Note
that the method startBraking is removed not only
from the metadata but from the JavaScript object
that represents the Plaid instance. A stopBraking

method is added to the object.

prioritizes fast method calls and �eld reads. A
method call in the source code produces a simple
method call in the compiled code.

5 Runtime

We discuss the speci�cs of representing Plaid objects
and states during the execution of the JavaScript
code produced by the code generator. We provide

speci�cs on the metadata structure, the distinction
between objects and states, and how the methods
for both objects and states are implemented. The
runtime's most important role is to be able to alter
objects' state structures during execution.

5.1 Objects and States

It is important to understand the distinction between
objects and states in Plaid. An object is an instance
of a state. Many di�erent objects may be in the same
state, and a single object may � as described in Sec-
tion 2 � be in many di�erent states, and thus have
many more features than are found within a single
one of its states. One creates a Plaid object from a
Plaid state. In this sense, a Plaid state is like a class,
and a Plaid object is like an instance.
State change does not occur with two states.

Rather, the item on the left of the <- is an object,
and the item on the right is a state. For instance,
in the statement car <- Driving, car is an object,
an instance of the Car state; Driving is a state. An
object can be transitioned into the state of another
object, but this requires �rst calling freeze on that
object. The freeze method produces a Plaid state
with all of the �elds and methods of the Plaid object
on which it was called.

5.2 Adding and Removing Members

To maintain the current state of an object, the run-
time must add and remove object members, and
change their values. JavaScript's support for �rst
class objects makes these runtime alterations pos-
sible. To remove the member foo from object
o requires the following JavaScript code: delete

o[�foo�];. To add the member foo to object o and
give it the value val requires the following JavaScript
code: o[�foo�] = val;. The latter can also be used
to change o's value of foo to val from any other value.
The value of val can be a primitive, an object, or a
function. Thus the structure of the JavaScript object
can be modi�ed in any way required for our imple-
mentation.

5.3 State Metadata

Within the runtime, the metadata tree describing a
state structure is stored as an array of arrays. In each
node of the tree, we store the state's tag, the names
of all associated members, and whether the node is a
case of its parent or composed using with.

16

1 var plaidNewState_OpenFile = new PlaidState(); // create JavaScript object to represent OpenFile
2 plaidNewState_OpenFile['read'] = function read () {...} // add the appropriate methods
3 plaidNewState_OpenFile['close'] = function close () {...} // to the new JavaScript object
4 //add the array of arrays that represents the metadata
5 plaidNewState_OpenFile.tree = [['',[],'with'],

6 [['File',[],'with'],

7 [['OpenFile',['close','read'],'']]]];

Listing 4: The JavaScript code that would be produced for creating a JavaScript representation of the state
OpenFile.

Figure 9: A visual representation of the metadata
that would be produced for an object in the OpenFile
state. File has �eld filename, and it is in state
OpenFile, which has methods read and close.

Recall the File example from Section 2.4, which
showed in Listing 1 the Plaid code for creating a
File and two substates, Openfile and ClosedFile.
Listing 4 contains the JavaScript code that would
be produced by running our code generator on the
code in Listing 1 and creating a �le in the OpenFile
state. The list

[['',[],'with'],

[['File',[],'with'],

[['OpenFile',['close','read'],'']]]]

on lines 5 through 7 is the metadata tree for the
OpenFile state. Figure 9 provides a pictorial rep-
resentation of the list. It is easy to see how complex
the metatdata tree for our Car state would be.

5.3.1 Members and Tags

The metadata is stored in the same format for both
states and objects. Thus the same operations can be
performed on the metadata of states and objects. We
cover some basic information that can be extracted
from metadata trees below. These will be used as
the building blocks for some of the more complicated
methods that must be implemented to use states and
objects. Other complex methods will require their
own, more specialized ways of traversing the meta-
data.

All Tags: A state's tag is its unique name. Tags
are useful for ensuring the same state is not added
to an object's state hierarchy in multiple places. A
state's tag is also used in the Plaid pattern matching
construct. To �nd all tags, the runtime has a function
that completes a simple traversal of the whole meta-
data tree, identifying the tags of any non-anonymous
states, and ultimately returning the set of all named
states present in the Plaid state or Plaid object.
All Members: To �nd all methods and �elds,

the runtime has a function that traverses the full
metadata tree, accumulating all members that ap-
pear in the metadata, including both members asso-
ciated with a given tag and members associated with
anonymous states. The resultant list is a list of ev-
ery member for which the Plaid state or Plaid object
stores a value, as well as all members that have been
declared without being assigned a value.
Match (tagName): Plaid supports a convenient

matching construct for executing di�erent code based
on the state of a particular object. The programmer
must provide the matchable states in an order of their
choice. According to Plaid's semantics, the code that
should be executed is the code for the �rst such state
that appears anywhere in the object's state hierarchy.
Thus, if an object is in both state A and A's child state
B, but the match statement checks �rst for the B case,
the code that should be executed is the code associ-
ated with state B. To conveniently answer this sort
of demand, the runtime has a function that traverses
the metadata either until the relevant tag (tagName)
is found, or until it has checked the entire tree, and
returns a boolean.
Members By Tag (tagName): The runtime

function for identifying the members associated with
a given tag (tagName) proceeds by traversing the tree
until it matches the tag, if it is present. If it is present,
the function returns the list of members associated
with the tag. If the tag is not present, it returns an
empty list.

17

Unique Members: An object satis�es the unique
members property if: (a) no two states in an object
de�ne a member with the same name; or (b) if two
states in the object do de�ne a member with the same
name, one of the de�ning states is a transitive spe-
cialization of the other. Plaid objects are required
to satisfy the unique members property at all times.
Sometimes this property must be explicitly checked.

Checking this property is complicated by the fact
that a state is permitted, according to Plaid's seman-
tics, to have a member that overrides a parent state's
member. In this context, a state A is a parent state
of state B if and only if (1) A is higher in the meta-
data tree and (2) all branches between A and B are
case of branches. That is, B was explicitly declared
as a substate of A. Of course, any state that appears
in the path from A to B is also a parent state of B,
since the same conditions are necessarily met by any
intervening state.

To check unique members under these conditions,
the runtime uses a recursive function that accepts the
current portion of the metadata list being checked, a
list of the tags of all of the current portion's parent
states, and a list of all the members encountered thus
far in the traversal. The function returns an object
that encodes whether a repeat member was found,
and the name of the o�ending member if there was
one. Because JavaScript passes arrays by reference,
the list of members always re�ects all members found
so far in the traversal, even without explicitly bub-
bling up the new additions.

For each list on which it is called, the
checkUniqueMembers function �rst checks whether
the current state has an and-state parent or an or-
state parent. If the state is a case of its parent, the
current state is added to the list of parent states. If
not, the list of parent states is cleared before adding
the current state.

The function next iterates through the members
associated with the current state, checking whether
each new member shares a name with any of the
members in memberList, the list of all members
found so far. If a member does not yet appear in
memberList, it is added. A new entry is appended
to the member list which includes both the name of
the member and the tag with which it is associated.
If the new member was found in memberList, there
is a potential con�ict. The function extracts the tag
from the memberList object that revealed the possi-
ble con�ict, and the tag is compared to all the tags
in the list of parent states. If the tag does not ap-

pear in that list, it indicates that the member ex-
ists in some other part of the state hierarchy, and
the current state is not permitted to overwrite this.
In this case, the function constructs a return object
that stores the fact that the metadata tree breaks the
unique members guarantee and stores the name of the
o�ending member, and this object is returned. The
return value is then immediately propagated back up
to the initial checkUniqueMembers call.
If none of the members of the current state revealed

any con�icts, the function iterates through the state's
children, calling checkUniqueMembers on them re-
cursively. If none of those calls return an object indi-
cating failure, the function constructs a return item
that indicates that no violation was found.

5.4 Runtime States

This section focuses on the representation we devel-
oped for Plaid states at runtime, the JavaScript ob-
jects that correspond to Plaid states. The JavaScript
�class� PlaidState contains all the necessary meth-
ods, and a PlaidState object is used to represent each
state in a Plaid program. Henceforth, we call the
JavaScript representation of a Plaid state a Plaid-
State. Similarly, we call the JavaScript representa-
tion of a Plaid object a PlaidObject.

5.4.1 Instantiate

The instantiate method of a PlaidState de�nes the
procedure for creating a PlaidObject from a Plaid-
State. This requires �rst checking that the state be-
ing instantiated has unique members, then that it
has unique tags. Objects that contain the same state
twice (i.e. in two di�erent parts of the state hierar-
chy) are not permitted in Plaid.
Next, the runtime clones the PlaidState's meta-

data tree and passes it into the constructor method
for PlaidObject. The PlaidObject constructor sim-
ply sets that tree as the metadata of the new object.
All the members of the PlaidState are copied to the
PlaidObject with their associated values (also stored
in the PlaidState). The resultant PlaidObject is re-
turned.

5.4.2 State Structure Modi�cations

Each of the methods described below is necessary to
facilitate one of the rich state modi�cation features
Plaid allows. Because a state is allowed to break the

18

unique members rule, none of these require checking
unique members.

Remove (memberName): The remove function
is called on a PlaidState object and passed the name
of a member. It returns a copy of the PlaidState that
lacks that member. The function proceeds by cloning
the metadata of the original state, and traversing the
clone. If a member with the relevant name is iden-
ti�ed in the metadata, it is spliced out. If no such
member is found, it throws an error. If the relevant
member was found, the value of the member that is
associated with the PlaidState is deleted from a new
PlaidState with the new metadata. This PlaidState
object is then returned.

Rename (oldName, newName): The rename

function is called on a PlaidState object, passed the
name oldName of a member, and a name newName

to replace oldName. It returns a copy of the Plaid-
State in which oldName is named newName. The func-
tion �rst clones the metadata of the original state,
then traverses the clone. If a member with the name
oldName is found, that entry in the metadata is re-
placed with newName. If the relevant member is not
found, the function throws an error. If it was found, a
new PlaidState is created with the new metadata, and
the value of oldName is copied into a new newName

member of the PlaidState. The oldName member is
then removed. After this, the PlaidState can be re-
turned.

Specialize (tag, memberName, member-
Value): The specialize function is called on a
PlaidState, passed the name of a tag tag, the name
of a member memberName, and the member's intended
value memberValue. It returns a copy of the Plaid-
State on which it was called, in which the memberName
member now has the value memberValue. The mem-
ber is associated with the tag that was passed in.
The function begins by cloning the metadata of the
original PlaidState, then �nding the portion of the
tree that lists members associated with tag. If
memberName is not already present, it is added to the
metadata. A new PlaidState is created with the new
metadata, and the PlaidState's memberName member
is given the value memberValue. The new PlaidState
is then returned.

With (state): For a more detailed description of
how and when with would be called in the runtime,
see Section 6.2. Within the runtime, it is su�cient to
know that calling with on a PlaidState and passing in
another PlaidState should produce a third PlaidState
object that has all the tags and all the members of

both. In the runtime function, the metadata tree
of the �rst and second states are cloned, and a new
PlaidState is created with the metadata of the �rst.
All the members from both the �rst and second state
are copied to the new, third state. Next, each branch
at the top level of the second state's tree is pushed
onto the top level of the new PlaidState's tree. That
is, the new state has the metadata for both states,
and every state that appeared in the top level of one
of the original two states also appears in the top level
of the new state, which is then returned.
WithMember (memberName, member-

Value): The withMember function is also focused
on composing states, but in this case, the second
state is de�ned by a member declaration. Thus, the
only parameters are the member's name and value.
A new PlaidState is created from the metadata of
the original PlaidState. The runtime creates a list
to represent an anonymous state (that is, a state
with no tag). This state contains the member that
was passed in, and the state is added at the top
level of the new PlaidState's metadata. A member
with the member's name is then added to the new
PlaidState and given the value that was passed in.
The PlaidState is then returned.
WithMemberNoValue (memberName): A

member can also be added to a state without giv-
ing it a value � it can be simply declared. To handle
this case, the runtime uses the withMemberNoValue

function, which precisely repeats the procedure ex-
plained above for withMember, except that no mem-
ber is added to the new PlaidState that is returned.
Instead, only the metadata is modi�ed.

5.5 Runtime Objects

We discuss the representation of Plaid objects at run-
time. Plaid objects are created by using the new key-
word on a Plaid state. Plaid objects are the analogues
of instances in purely class-based languages. Just as
the PlaidState class was used to manipulate Plaid
states at runtime, the PlaidObject class is used to
manipulate Plaid objects at runtime. Henceforth, we
call the JavaScript representation of a Plaid object a
PlaidObject.

5.5.1 Freeze

In order to use PlaidState functionality on the state
represented in a PlaidObject � for instance, to use it
as a state change target, or to compose it with other
states � the programmer must �rst freeze the object.

19

The freeze method thus very simply creates a new
PlaidState object with a clone of its own metadata,
copies all �elds and methods to the new PlaidState,
and returns it.

5.5.2 Replace

The replace or wipe function is a variant on state
change. If target is the PlaidObject on the left-
hand side of the <- operator and update is the
PlaidState on the righthand side, replace ignores all
of target's state information and supplants it with
update's state information.
To accomplish this, the function �rst ensures that

update conforms to the unique members property
and also the unique tags property. If it does not,
the function throws an error. Otherwise, the func-
tion continues by removing all the members associ-
ated with target, as revealed in its metadata, adding
all the members associated with update, and setting
target's metadata to be a clone of update's meta-
data.

5.5.3 State Change

The state change operator <- adds to the receiver
any states that are present in the updating state but
not in the receiver. It removes from the receiver only
states that are mutually exclusive with the incoming
states.
To informally introduce the process of implement-

ing state change, we �rst look at a high level overview
of the steps that must be followed to correctly enact
state change given our chosen state representation.
We will also examine how these steps are applied to
a concrete example in the �gures alongside.
The Plaid statement target <- update leads to

the following steps:

1. Traverse target's metadata until �nding a state
with the same tag that appears at the root of
update's metadata. If that tag is never found,
let the top level of the tree act as the matched
tag. Call this the root tag.

2. Traverse target's and update's metadata
jointly, matching tags where possible.

3. Identify all tags below the root tag that appeared
in target's metadata but not in update's.

4. Remove the nodes identi�ed in the step above
from target's metadata.

5. Identify all tags that appeared in update's meta-
data but not in target's.

6. Add the nodes identi�ed in the step above to
target's metadata, in the places corresponding
to their places in update's metadata.

7. From the PlaidObject itself, remove all members
associated with the states that were removed
from target.

8. From the PlaidObject itself, add all members
associated with the states that were added to
target.

For example, let target be an object in the Car

state de�ned in Listing 3, and let target be cur-
rently in the Braking state. Then let update be the
state NotBraking. The Plaid statement target <-

update leads to the following steps:

1. In step 1 (Figure 11), the runtime identi�es Car
as the appropriate root state.

2. In step 2 (Figure 12), the runtime matches all
possible tags until reaching BrakingStatus' chil-
dren. The BrakingStatus children in target

and update do not match.

3. In step 3 (Figure 13), the runtime determines
that Braking does not appear in update's meta-
data.

4. It thus removes Braking in step 4 (Figure 14).

5. In step 5 (Figure 15), the runtime determines
that NotBraking does appear in update's meta-
data, but not in target's.

6. It thus adds NotBraking to target's metadata
in step 6 (Figure 16).

At this point, the metadata has been fully updated.
Next, the member stopBraking would be removed
from the JavaScript object that represents target,
and the member startBraking would be added.
The �rst step in implementing state change in the

Plaid runtime is to short circuit the process if update
is not in a an acceptable state - that is, if it violates
unique members or unique tags. If update is well-
formed, then state change proceeds. To accomplish
this, we use two recursive functions, the �rst to tra-
verse the tree until it �nds the appropriate root state
in target's metadata, the second to match tags once
a root state has been found.

20

Figure 10: The Plaid object target (left) and the Plaid state update (right) before state change.

Figure 11: Step 1. Match the tag at the root of update's metadata. In this case, we match Car immediately.

Figure 12: Step 2. Continue matching children as long as all of update's children appear in target. We
match DrivingStatus, Driving, and BrakingStatus before target fails to contain one of update's children.

Let findRootState be the function for �nding the
root state. First, if the current item being exam-
ined is connected to its parent by a with branch, the

list of parent states parentStates is cleared before
adding the current tag to parentStates. Otherwise,
the current tag is merely added to parentStates. An

21

Figure 13: Step 3. Identify a case of state that appears in target but not update. These are mutually
exclusive. In this case, the state is Braking.

Figure 14: Step 4. Remove the case of state that appears in target but not in update (Braking).

Figure 15: Step 5. Identify the state in update's metadata that necessitated the removal of the case of

state. In this case, NotBraking necessitated the removal of Braking.

object memberData that stores all the necessary infor-
mation about members is passed to the function, and

updated as necessary. If the current item in target

is an anonymous state, any members in the current

22

Figure 16: Step 6. The state in update's metadata that was mutually exclusive with target's removed state
is added to target's metadata. In this case, NotBraking is added to target. Metadata update is complete.

item are added to a list of target's untagged mem-
bers maintained in memberData. If the current item
in update is an anonymous state, any members in the
current item are added to a list of update's untagged
members maintained in memberData.
If update's current item is an anonymous state,

it indicates that we must traverse the tree to �nd a
matchable tag. That is, although there may be mem-
bers at this level, any tags that should be matched
will appear as children of the current state. In this
case, findRootState must call itself recursively on
slightly modi�ed arguments. Rather than passing
in the entire tree of update, it passes in each child
individually, while passing the same component of
target's metadata that it received as an argument.
This allows the function to identify the correct tags
in update to use as root states to �nd in target.
If update's current item is not an anonymous

state, findRootState checks whether the current
top-level tags of target and update match. If
they do, findRootState calls the second function,
matchStates on the current portions of target's and
update's metadata. If they do not, the function calls
findRootState on each of the current target node's
children, passing in the same portion of update's
metadata that it received. This results in a full
traversal of target's metadata, if the appropriate
top-level tag of update is never found.
The function matchStates continues to track

parentStates, as in findRootState. Because
matchStates is only ever called on portions of the
metadata for which the top-level tags are known to
match, if both the current portion of target's meta-
data and the current portion of update's metadata

have length 1, the current branch matches without
any additional modi�cation. The memberData ob-
ject that has been built up during the execution of
findRootState and matchStates calls is returned.
If the function has not yet reached a leaf, it must

continue to make recursive calls to itself. Looping
through all children of both current nodes reveals
whether any have matching tags. If a tag match is
found, matchStates is called on those portions of the
target and update trees. During this process, the
function tracks whether a match has been found for
each child state from update.
Next the function checks whether there exists an

or-state which needs to be changed to a di�erent
or-state. If any pair of left and right children is
found such that they are both or-states but have
a di�erent tag, all of the left state's members are
added to memberData's members to remove attribute,
and all of the right state's members are added to
memberData's members to add attribute. Recall
that information about which members are associated
with which tag is stored directly in the trees that this
function traverses, with the tags themselves, so this
information can be retrieved e�ciently during the
traversal. The list of members to add can be found by
traversing only the current branch of update's meta-
data, and the list of members to remove can be found
by traversing only the current branch of target's
metadata. After gathering all the necessary infor-
mation from target's branch, target's child state is
replaced by a clone of update's child state.
After this, the function checks for the addition of

a new or-state � that is, for an or-state that is a
child of the current top-level tag in the update but

23

not in the target. If one is found, a copy of the
child state is pushed onto the current level of target's
metadata tree, and all of its members are added to
memberData's record of members to add.
At the end of this process � or earlier when it can

be established that there is no reason to explore the
current branch further � the memberData object is
returned.
Because of the in-place modi�cations, replacing

small portions of target metadata tree with copies of
the corresponding portions of the update metadata
tree, by the time all of these recursive calls have com-
pleted execution, target's metadata has been com-
pletely updated. It now re�ects the state structure
that should exist after state change is done. Further,
the memberData object that was returned has a full
list of all of the members that should be added or
removed.
The memberData object also contains a �ag to in-

dicate whether the root tag was matched. If no root
tag was found in the target's metadata, each branch
of update's metadata is cloned and pushed as a new
branch onto target's metadata.
To continue state change, the runtime next per-

forms a more e�cient unique members check, using
the information it collected in memberData. Next,
the runtime veri�es the unique tags property with
the standard unique tags approach. If any members
that are not associated with tags in update already
appear in target, the runtime throws an error. If
no such error is thrown, those members are added
to target's metadata, at the top level, and are also
added to the list of members to add.
Finally, all the items that appear in the list of mem-

bers to remove are deleted not only from the meta-
data but from target, the PlaidObject. All items
that appear in the list of members to add are added
to the target object, and assigned the values they
have in update, the PlaidState. This completes the
process of state change.

6 Code Generator

Our code generator implements a source-to-source
translation from Plaid to JavaScript. It was im-
plemented in Plaid. It must perform many of the
same translations that other source-to-source com-
pilers handle. However, the code generator can also
play a role in some of Plaid's state-based operators,
beyond simply calling the runtime functions that im-
plement them. By generating the code for some

specialize and with calls at compile-time, the code
generator can reduce the execution time of the resul-
tant code.

6.1 Specialize

Specialize is a way of creating a copy of a state that
contains a di�erent value for a particular member.
For instance, if the Plaid source contained the line
val s2=s1{foo=1};, s2 would have all the same tags
and members as s1, but whereas s1.foo may be 5,
s2.foo will be 1.
Processing a specialization call in the code gener-

ator requires �rst creating a record of the new state
being created. The code generator must then list all
of s1's �with members�, then search for a member
name that matches the name of the attribute to be
specialized. If a match is found, the code generator
emits JavaScript code to alter the value of the target
member.
Next, the compiler examines all other members of

s1 for a match. If a match is found, the code gener-
ator throws an error. Otherwise, if the name of the
member to be added does not name a member al-
ready present in s1, the compiler emits the code to
add that member to the JavaScript PlaidState. The
compiler then updates its record of the new state's
members, adding the new member to the tree.
This process ensures that a specialization is never

mistakenly carried out, that the code for modifying
the new state's member is always emitted if the spe-
cialization can occur, and that the compiler's record
of the state's current members remains up to date.
The process described above is the process for the

case where the state being specialized is a state about
which the code generator has full information. This
usually occurs if the state is de�ned in the �le that
is currently being compiled. It has the advantage of
throwing any errors during compilation rather than
delaying feedback until execution. It also reduces
the amount of computation (unique member checking
and method copying) that needs to be done during
execution, thus improving the compiled code's run
time.
The code generator must also emit code for the case

when it does not have complete information about the
state being specialized. When this case arises, the
code generator retrieves the name of the JavaScript
variable in which s1 is stored. It then produces a call
to the runtime's specialize function, calling it on s1

and passing in the member name and member value
with which the new state should be modi�ed.

24

6.2 With

With is a way of creating a new state composed of
two other states. The new state has all the tags and
members of both component states, both of which
are in the top level of the hierarchy of the new
state's tree. For instance, the Plaid code state Car

= DrivingStatus with CleanStatus would create
a state Car that has all the tags and members of both
DrivingStatus and Car.
Listings 5 and 6 show some ways in which with can

be used. The statements in Listing 5 would appear in
the state declaration portion of a program, and would
store the new state being created. The statements in
Listing 6 would appear in the body of the program,
and would create instances of the new states.
To emit JavaScript code for a use of with, the code

generator �rst checks whether any member or any tag
appears in both of the states to be composed. If there
is any overlap, the code generator throws an error. If
there is no error, the code generator creates a record
for the new state being created and associates all the
new state's members with that record. It then emits
code to add all the members of S1 to a copy of S1,
which will represent the state in the JavaScript code.
The above process is appropriate when the code

generator has full information about both of the
states involved. When it does not, the code generator
must call the runtime with function of PlaidState
objects. In this case, the code generator retrieves the
names of the JavaScript variables representing the
two states, and emits the code to call with on one of
them, with the other as an argument.
It is also possible for with to be used when ei-

ther or both of the states are simply lists of member
declarations, as in the object eObject displayed in
6. In this case, the code generator calls the runtime
method withMember to add each member declared in
the list. It is also possible for withs to be chained,
as in the code: val cObject = new A with B with

C. In this case, the compiler would �rst generate code
for the rightmost pair of states (B and C), then use
the result as the argument for the next with (A), and
so on. Thus, the only types of items that the code
generator must combine using with are pre-de�ned
states, lists of declarations, and the results of other
calls to with.

6.3 State Change

The code generator does not perform any part of the
computation for state change, but rather produces

the code to call the runtime's state change methods,
distinguishing between the situations in which each
state change method is appropriate. The code gener-
ator �rst processes the object on which state change
will be called. Next, if the target state is a pre-
de�ned state, it emits a call to the basic stateChange
method. In the case that the target state is a list of
declarations, the code generator emits code to repeat-
edly call stateChangeMember, adding the members
to the object in the order in which they are de�ned.
This is the extent of the code generator's involvement
in state change.

7 Design Issues

We highlight a few of the most important design ques-
tions we faced in the development of our compiler and
runtime system. We also consider alternative designs
and explore the preferred solutions we implemented.

7.1 How to Store the Metadata

The central focus of our work is to produce a new,
e�cient runtime representation for objects with state.
We have already discussed at length the reasons for
using a metadata object to accomplish this. Next, we
turn to the design of the metadata object itself.
States that are connected to their parents with

case of relationships are easily visualized as part
of a tree that allows one child per parent. While
states that are composed from other states are not
as obviously part of a tree structure, the same mem-
ber rules apply as in the case of situation, if the
composing states are treated as the children of the
composed state. For instance, just as a File in the
OpenFile state should be able to use all the members
of OpenFile, a Table = Surface with Legs should
be able to use all the members of the Surface and
Legs states. This suggests the representation of state
data in tree form, where each branch from a node A

represents another state that is either a case of state
A or a state used to compose state A. In this scheme,
every state begins as a tree with only a root, and all
composing states added as children of the root.
With this tree structure in mind, and rules in place

for linking states and substates, the next question to
address is what information to store in each node.
This is answered simply by examining all the infor-
mation necessary for state change:

1. The state's tag

25

1 state A { val a = 1; method y() { 1 } }

2 state B { val b = 2; method z() { 2 } }

3

4 state C = A with B // state with state
5 state D = A with { method f() {6} } //state with member
6 state E = { method g() {8} } with {val seven = 7; } // member with member

Listing 5: Several examples of the use of with to compose states, in state declarations.

1 val cObject = new A with B; //state with state
2 val dObject = new A with {method f() {6}}; //state with member
3 val eObject = new {method g() {8}} with {val seven = 7;}; //member with member

Listing 6: Several examples of the use of with to compose states, in program body.

2. The members declared within the state

3. Whether the state is a component of the parent
state, or a case of the parent state

For each state in an object's state structure, there
exists a node in the metadata that contains this in-
formation.
Although the metadata would have been most intu-

itively represented with a tree data structure, our im-
plementation uses an equivalent deeply nested array
of arrays to represent the tree. A Plaid programmer
never needs to interact with the metadata represen-
tation, so ease of user programming was not relevant
to the choice of representation. Further, using an
array of arrays means being able to change the tree
structure with simple array manipulations, and ac-
cessing items in an array, rather than attributes of
an object. Although all JavaScript objects can be
understood as associative arrays � with the result
that using arrays instead of an object model should
not change performance � microbenchmarks reveal
that some JavaScript engines perform better on array
access than on associative array access [14]. Since the
metadata node class would have a �xed set of three
members (corresponding to the three pieces of infor-
mation stored with each node), simple array indexes
can be used to identify the members.

1 method main() {

2 var file = new OpenFile;

3 }

Listing 7: Plaid code for creating a �le state with
a shallow metadata tree. Assumes the FileObject

state and its substates have already been de�ned.

1 [['', [], 'with'],

2 [['File', ['filename'], 'with'],

3 [['OpenFile', ['close', 'read'], '']]]]

Listing 8: The metadata for the File object created
in 7. The root state is File, which has one member,
filename. Its child OpenFile is a case of File, and
has members close and read.

1 method main() {

2 var car = new Car;

3 car<-Braking;

4 car<-TurningLeft;

5 car<-Clean;

6 }

Listing 9: Plaid code for a car state with a deep meta-
data tree. Assumes the Car state and its substates
have already been de�ned.

As an example, Listing 7 creates a simple File ob-
ject with a shallow metadata tree, shown in Listing
8. A pictorial representation of the tree appears in
Figure 9. Listing 9 creates a complex Car object with
a deeper metadata tree, shown in Listing 10. A pic-
torial representation of the tree appears in Figure 6.

7.2 When to Create Metadata and

Add Members

The runtime includes functions that can carry out all
permissible forms of state composition and mutation.
These functions can create and modify the metadata,
and add state members. This permits a compilation

26

1 [['', [], 'with'],

2 [['Car', [], 'with'],

3 [['CleanStatus', [], 'with'],

4 [['Clean', ['getDirty'], '']]],

5 [['DrivingStatus', [], 'with'],

6 [['BrakingStatus', [], 'with'],

7 [['Braking', ['stopBraking'], '']]],

8 [['DirectionStatus', [], 'with'],

9 [['TurningLeft', ['turnRight', 'turnStraight'], '']]]]]]

Listing 10: The metadata for the Car object created in Listing 9.

scheme in which any state built up from other states
is composed at run time. Although this signi�cantly
simpli�es the process of code generation, it is impor-
tant to keep in mind that very complex states can
be constructed in the state declaration portion of a
program, using with and specialize. Thus at run-
time, the execution of main may be delayed until the
completion of many with and specialize calls. This
means waiting until the runtime functions create and
combine many metadata trees; until they identify the
members of component states; until they copy those
members to the new composite states.

We chose a route that mitigates early state
composition costs. In our implementation, the code
generator uses a Tree object to accumulate meta-
data. The Plaid tree is �rst created when a new state
A is declared using a list of declarations. A function
converts this Tree object into the JavaScript array of
arrays that is used to construct a PlaidState. After
this point, if a new state B is declared using state A,
the code generator creates a new Plaid Tree for B.
The data stored in A's Tree can be used to identify
all of A's members that must be copied to B, and
the code generator emits the code to perform each
copy, rather than relying on the runtime to traverse
the metadata and identify all members to copy.
Having A's metadata available also means that B's
Plaid Tree can contain all the information relevant
to constructing the JavaScript array of arrays for B.
Thus, rather than emitting a line like:
var plaidNewState_C =

plaidNewState_B.with(plaidNewState_A);

which requires a fair amount of runtime computation
to both create the tree and identify the appropriate
members to add, the code generator can emit the
code in Listing 11, which creates the tree and adds
the members. The work of the with computation
has essentially been shifted from the runtime to the
code generator, a clearly preferable balance of work,

given that a program will be compiled once and may
be run many times.
There are limitations, however, on how much of

the state-related computation can be shifted to the
code generator. First, the code generator emits calls
to the runtime for state compositions that take place
during program execution. The Plaid Trees are only
used for declarations of states that occur outside of
executable code, in the state declaration phase of the
program being compiled. Second, in the current im-
plementation, the compile-time approach cannot be
used if one of the component states is de�ned in an-
other source �le or a library. In a more advanced
compiler, it might be desirable to associate some in-
formation about declared states with any compiled
program, in a Plaid-readable format. This informa-
tion could be used by the code generator to generate
full Plaid Tree objects even for states composed using
externally declared states.

7.3 Overrides

Overriding behavior has been brie�y discussed so far,
but supporting this feature does require special steps
that store some members even if they are not cur-
rently callable.
Plaid allows a child state to override a parent's

value for a �eld or method, if the child is a case

of the parent. The runtime must be able to deter-
mine which of these values to assign to the PlaidOb-
ject's member of that name. It also means that us-
ing the simple state change scheme described above,
the runtime might remove a member entirely even
though the member should still exist, but must store
the value provided by another state.
One question is how to keep track of a single ob-

ject's di�erent substates' values for the same mem-
ber. Substate information must be stored with the
object, in case the value is speci�c to a particular in-

27

1 var plaidNewState_C = new PlaidState(); // create the new JavaScript object to represent state C
2 plaidNewState_C['a'] = plaidNewState_A['a']; // add all of A's members to the new JavaScript object
3 plaidNewState_C['b'] = plaidNewState_B['b'];} // add all of B's members to the new JavaScript object
4 // add the appropriate metadata tree to the new JavaScript object
5 plaidNewState_C['tree'] = [['', [], 'with'],

6 [['C', [], 'with'],

7 [['B', ['b'], 'with']],

8 [['A', ['a'], 'with']]]];

Listing 11: The JavaScript code that would be emitted by the code generator to complete the with operation
that composes States A and B to form a new state C. State A has member a, and State B has member b.

stance. Our usual approach would simply overwrite
old values. Let state B be a case of A, and let A de-
�ne x to be 'a', and B de�ne it to be 'b.' If we start
with a PlaidObject plaidObjA created by calling in-
stantiate on A, plaidObjA['x'] will be 'a.' If we
then transition the object to state B, plaidObjA['x']
will be 'b,' and there will no longer be any record
of what x should be if the object is not in state B.
In fact, any state change that would remove state
B without adding a new value for x would remove
plaidObjA['x'] entirely.
The �rst step is to store all values for an overrid-

den member during code generation. If a state B is
declared as a case of another state A, the tree of
state A is checked for any overlapping members. If
an overlapping member x is found, the code genera-
tor checks whether A's tree contains a member named
Plaid$A_x. If it does, no change is made to A. If it
does not, the member is added to the code generator's
A metadata and then to the JavaScript PlaidState, by
emitting code to add the member to the PlaidState's
metadata, then emitting JavaScript code to set the
object's value for Plaid$A_x equal to its value for x.
The value of B's x member is set in the usual way, but
the member Plaid$B_x is also added to its metadata
and the corresponding PlaidState.
Whenever an object is created or changed in the

runtime, it is �rst checked for unique members. This
process reveals any members whose names appear
twice in the metadata. When a member does ap-
pear twice, the parent states of the instance at the
greater depth are checked to ensure that it is one of
those states that declares the member. When the
runtime �nds that a state B and its parent A both
de�ne a member x in PlaidObject obj, the runtime
checks whether obj['Plaid$A_x'] is de�ned. If it
is not, it sets obj['Plaid$A_x'] = obj['x'], if A
was already present in the state. If A was added in
the current function, it sets obj['Plaid$A_x'] to the

value of Plaid$A_x in the source state. Next, it sets
obj['Plaid$B_x'] equal to the source state's value
for Plaid$B_x, or to the source state's value for x if
Plaid$B_x is not de�ned1.
The process detailed above ensures that all possible

values for an overridden member are available within
the object. It does not ensure that the object's value
for that member (e.g. obj['x']) is up to date. To
achieve this, we process the unique member checks
in order of increasing depth, tracking which states
de�ne x. If the last state to do so is X, obj['x'] is
set equal to obj['Plaid$X_x'].
The procedure detailed above ensures that the cor-

rect value of x is in force when the same member
name appears twice in an object's metadata. How-
ever, it does not cover the case where there is only
one remaining state that de�nes the member. For in-
stance, consider the state B described above. If state
change removed the substate B from an object in state
B without adding a new overriding value, A's value
of x should be used as the object's value for x. In-
stead, x would be deleted from the object, and no
unique members check would add a new value. To
handle this case, the runtime also accumulates the
list of all members whose names begin with Plaid$,
removing items as they are handled in unique mem-
ber checks. Any items that remain in the list after
the veri�cation of the unique members property rep-
resent backup values for members that should not be
deleted but overwritten. The runtime checks whether

1This scenario, where Plaid$B_x is unde�ned is unlikely,

because in order for B to be a case of A in the PlaidObject,

it must also be a case of A in the source state. However, it

is possible. Consider a case where a PlaidObject obj is cre-

ated from A {var x=5;}, and then a new PlaidState state is

created from B {var x=6;}. Because no duplicate member ex-

ists in either the PlaidObject or the PlaidState, neither would

have backup values for x. However, the statement obj<-state

must still result in values for both obj['Plaid$A_x'] and

obj['Plaid$B_x'].

28

those members are on the list of members to remove.
If they are not, the value remains untouched. If they
are on the list of members to eliminate, they are re-
moved from that list, and the backup value replaces
the old value. For instance, if Plaid$A_x remains
in the list, the runtime checks whether x is on the
list of members to remove. In the case discussed
above, x would be on that list, so obj['x'] is set
to obj['Plaid$A_x'].

8 Results and Discussion

To evaluate the performance of this implementation,
we tested on several benchmarks from the V8 bench-
mark suite [24]. The JavaScript programs that con-
stitute this suite are used to tune V8, Chrome's
JavaScript engine [23]. We translated the suite's
Splay, Richards, and DeltaBlue benchmarks from
JavaScript into Plaid to form a small suite of Plaid
benchmarks.
We tested our implementation's performance on

these Plaid benchmarks in two ways. We compiled
the benchmarks to Java with the old Plaid implemen-
tation (discussed in Section 3.1.1), and to JavaScript
with our new implementation, and compared execu-
tion times. We also compared the execution time
of the JavaScript code produced by our Plaid-to-
JavaScript compiler with the execution time of the
original JavaScript versions of the benchmarks. All
JavaScript code was run in SpiderMonkey [18].
First, we compare the old Java and new JavaScript

implementations of Plaid. Even with the current non-
optimized compilation strategy, the JavaScript com-
piler far surpasses the performance of the pre-existing
Java compiler. Table 1 displays the results of running
the two Plaid compilers on the Plaid Richards bench-
mark. Execution time for the Java code was 48 times
slower than the execution time of the code produced
by our JavaScript compiler (7,600ms vs. 157ms in
Table1). As planned optimizations move forward, the
performance of the JavaScript compiler should com-
pare even more favorably.
Next, we compared the JavaScript code produced

by our compiler to the original V8 JavaScript pro-
grams, the results of which appear in Tables 2, 3, and
4. These preliminary results reveal that the run time
for code compiled from Plaid ranged from 2.6 times
slower than the run time of the original JavaScript
implementation (760ms vs. 1950ms for the Splay
benchmark in Table 2) to 8.7 times slower than the
run time of the original JavaScript implementation

(19ms vs. 166ms for the Richards benchmark in Ta-
ble 4).

Java and JavaScript Compilation
Plaid to Plaid to
Java JavaScript

Mean Run Time (100 µs) 76,000 1,570
Standard Deviation 2,000 40

Table 1: A comparison of the run time for the
Richards benchmark, executed using the Plaid to
Java compiler and the Plaid to JavaScript compiler.
The values are in units of 100µs and represent the
results of

Splay
JavaScript Plaid to

JavaScript
Mean Run Time (ms) 760 1950
Standard Deviation 30 70

Table 2: Execution time for the Splay benchmark. A
comparison of the original JavaScript program and
the same program translated to Plaid and compiled
to JavaScript. The values are in ms and represent the
results of 300 runs. The original JavaScript version
is 2.6 times faster than our Plaid version.

DeltaBlue
JavaScript Plaid to

JavaScript
Mean Run Time (ms) 40 170
Standard Deviation 10 20

Table 3: Execution time for the DeltaBlue bench-
mark. A comparison of the original JavaScript pro-
gram and the same program translated to Plaid and
compiled to JavaScript. The values are in ms and rep-
resent the results of 300 runs. The original JavaScript
version is 4.2 times faster than our Plaid version.

The size of the slowdowns of our Plaid versions over
the original JavaScript versions appears to be related
to the execution time of the benchmarks. Our Plaid
implementation exhibits better relative performance
on longer-running benchmarks. Although Splay is
also the shortest source �le, the DeltaBlue bench-
mark has substantially more lines of code than the
Richards benchmark, so we conclude that run time
rather than program length accounts for this e�ect.

29

Richards
JavaScript Plaid to

JavaScript
Mean Run Time (ms) 19 166
Standard Deviation 2 5

Table 4: Execution time for the Richards benchmark.
A comparison of the original JavaScript program and
the same program translated to Plaid and compiled
to JavaScript. The values are in ms and represent the
results of 300 runs. The original JavaScript version
is 8.7 times faster than our Plaid version.

This leads us to believe that SpiderMonkey's frequent
path optimizations may be the cause. With this in
mind, we predict that most long-running programs
with frequently repeated code may have slowdowns
in approximately the range of Splay's 2.6 factor.

Plaid Richards and Plaid′ Richards
Plaid Plaid′

Mean Run Time (ms) 290 2,460
Standard Deviation 70 80

Table 5: A comparison of run times for the Plaid and
Plaid′ versions of the Richards benchmark, compiled
with our JavaScript compiler. The Plaid′ version of
the benchmark uses state change in the inner loop.

Although these results are encouraging given that
they are produced with a still non-optimizing com-
piler, it is important to keep in mind that the Splay,
DeltaBlue, and Richards benchmarks were developed
for traditional languages, without Plaid's new fea-
tures. Most importantly, although they make use of
other aspects of Plaid's state model, these bench-
marks do not use state change. However, we did
discover that the Richards benchmark could bene�t
from explicit state transition. In fact, the Richards
program uses de facto state change within an inner
loop. To test the e�ciency of our state change imple-
mentation, we wrote a Plaid′ version of the Richards
benchmark. The Plaid′ version of Richards is a vari-
ation on our �rst Plaid Richards benchmark, a vari-
ation that leverages Plaid's novel state change func-
tionality. Table 5 shows the execution time of Plaid′

Richards and Plaid Richards, compiled to JavaScript
with our new implementation. We see an 8.4 times
slowdown of Plaid′ Richards over Plaid Richards
(290ms vs. 2,460ms in Table 5).
This slowdown is far above what we consider an

Non-State DeltaBlue
Computation

State Instantiation

Replicating State
Information

Modifying State

Non-State Richards
Computation

State Instantiation

Replicating State
Information

Non-State Richards
Computation

State Instantiation

Replicating State
Information

Modifying State

State Change

Non-State Splay
Computation

State Instantiation

Replicating State
Information

Figure 17: Splay: 2.7% of execution time is spent on
state-related computation.

Non-State DeltaBlue
Computation

State Instantiation

Replicating State
Information

Modifying State

Non-State Richards
Computation

State Instantiation

Replicating State
Information

Non-State Richards
Computation

State Instantiation

Replicating State
Information

Modifying State

State Change

Non-State Splay
Computation

State Instantiation

Replicating State
Information

Figure 18: DeltaBlue: 2.6% of execution time is spent
on state-related computation.

acceptable level. However, it is important to keep in
mind that we developed our implementation to opti-
mize for frequent member access, not frequent state
change. In fact, we proposed that in most programs,
member accesses will far outnumber state transitions.
In the Plaid′ Richards benchmark, state transition
operations are proportional to member accesses. We
believe this is far from the common case. Neverthe-
less, programs like this are more naturally expressed
in a language with abstract state support, and they
should be e�cient in Plaid. Our Plaid′ �ndings there-
fore inspire the state change optimization we propose,
which we believe is the next crucial step in imple-
menting fast state support.
To determine how e�ectively we minimized state-

related computation, and to identify appropriate tar-
gets for optimization, we pro�led all four Plaid lan-
guage benchmarks. Casual examination of the Splay
chart in Figure 17 and the DeltaBlue chart in Fig-
ure 18 reveals that state-related computation requires

30

Non-State DeltaBlue
Computation

State Instantiation

Replicating State
Information

Modifying State

Non-State Richards
Computation

State Instantiation

Replicating State
Information

Non-State Richards
Computation

State Instantiation

Replicating State
Information

Modifying State

State Change

Non-State Splay
Computation

State Instantiation

Replicating State
Information

Figure 19: Richards: 7.5% of execution time is spent
on state-related computation.

only a very small portion (less than %3) of the execu-
tion time of those benchmarks. As we see in Figure
19, the percentage is a little higher for Richards, but
is still only 7.5%. These charts also indicate that
state instantiation is the most computationally ex-
pensive portion of the runtime, accounting for 2.6%
of Splay run time, 1.5% of DeltaBlue run time, and
3.7% of Richards run time. Crucially, the balance of
state computation to non-state computation in these
benchmarks suggests that most of the slowdown in
our execution times is not a result of our state rep-
resentation, but of our simple scheme for compiling
ordinary code.
Next we turn to the breakdown of execution time

for the Plaid′ version of the Richards benchmark,
shown in Figure 20. For this benchmark, state-
related computation constitutes 93.4% of the run
time. State change alone accounts for 93.1% of the
run time.
These results indicate that state change must be

the primary target for future optimizations of our
implementation. Because we prioritize member ac-
cess over state change, our current implementation
scheme has yet to address the challenge of making
state change e�cient. Undertaking that task is a crit-
ical next step.
Preliminary results show that we have succeeded in

our task of supporting state without slowing member
access. Although we see substantial slowdowns when
we compile Plaid benchmarks to JavaScript and run
them alongside the original JavaScript benchmarks,
we �nd that only small portions of the additional ex-
ecution time stem from features of our state repre-
sentation.

Non-State DeltaBlue
Computation

State Instantiation

Replicating State
Information

Modifying State

Non-State Richards
Computation

State Instantiation

Replicating State
Information

Non-State Richards
Computation

State Instantiation

Replicating State
Information

Modifying State

State Change

Non-State Splay
Computation

State Instantiation

Replicating State
Information

Figure 20: Plaid′ Richards: 93.4% of execution time
is spent on state-related computation.

9 Future Work

There remain many pressing questions on the topic
of how to e�ciently compile a language that supports
state change. This research will go on to investigate
further re�nements of the JavaScript implementation.
To start, we hope to implement several state-related
optimizations. However, we also consider alternative
implementations for languages without the �exible
object model JavaScript o�ers.

9.1 Reducing Unique Member Checks

State instantiation is the creation of a PlaidObject
from the information in a PlaidState object. It is
one of the more computationally expensive proce-
dures that the runtime must conduct. The process
of instantiation as we laid it out before always checks
the unique members property, even if the state being
instantiated has been instantiated in the past without
errors.
Because each new PlaidObject must have its own

copy of all its state information, and its own mem-
bers, to speed up member access at runtime, reduc-
ing object creation time was unlikely to be a fruitful
target for optimizations. However, the time spent
rechecking a single state for compliance with Plaid's
semantics is redundant. To optimize state instanti-
ation, the unique members check need only ever be
performed once on any given state.
To accomplish this, we could store a �ag with each

JavaScript representation of a PlaidState, indicating
whether or not it has been instantiated in the past.
If it has been, and no error was thrown, the runtime
can conclude that the state satis�es the unique mem-

31

bers check, and the check need not be repeated. The
runtime will proceed with creating the appropriate
PlaidObject. If the state has never been instanti-
ated, the runtime will complete the unique members
check, then use the �ag to indicate that the state has
been checked if the object satis�es the unique mem-
bers property.

9.2 State Change Caching

Our implementation prioritizes fast member access by
sacri�cing fast state change, with its complex meta-
data processing. Given the relative frequency of state
change and member access in most programs, it is
appropriate speed up member access at the cost of
slowing state change. However, it is still possible to
change state fairly frequently, and it is easy to imag-
ine programs in which there is one state transition
for each member access, in which case there is an
incentive to reduce the time spent on state change.
State change is computationally expensive largely

because of the tree traversal process. If it were pos-
sible to identify the appropriate members to add and
remove without the joint metadata traversal, there
would be a substantial improvement in computation
time of state change.
It is fairly common to use objects that will repeat

transitions between the same pairs of states. Whether
it is a stack model that shifts back and forth from
empty to non-empty; a carousel that repeats the tran-
sitions from loading to running, running to unloading,
and unloading to loading; or a pace model that re-
peatedly executes one of the six transitions between
standing, walking, and running. This drives the need
for storing the results of state change between a given
state and object. If we choose to trade o� space for
execution time, it makes sense to store all the mod-
i�cations that should be made for a particular tran-
sition, so that those modi�cations need not be re-
calculated when a speci�c state transition is enacted
multiple times.
This rationale motivates a state change caching op-

timization, which proceeds by populating a set of
hash tables in the runtime. For each PlaidObject
on which a state transition is enacted, the runtime
would add an entry in the transition cache for the
state to which it is transitioned. The entries also
have a direction. The information used for the tran-
sition a<-b is not the same information used for the
transition b<-a.
When a new state transition occurs, that does not

yet appear in the table, the runtime would execute

the normal state change calculations described in 4.
In the state change cache entry, the runtime records
the members that were added and removed as a result
of the state transition. This process adds very little
to the run time of a new state change, since it sim-
ply requires storing two lists that the process already
created. As a result, even in programs where most
state transitions are new transitions, this modi�ca-
tion should not signi�cantly slow execution. Alter-
natively, rather than store the lists of members, the
runtime could generate the code to transition the ob-
ject, then cache that code. Again, because this code
must be generated in any case, this should not add
signi�cantly to the execution time.
When any state transition occurs, the runtime

would �rst check whether the transition already ex-
ists in the state change cache. If it does not, it would
execute the steps detailed above. If, however, the
state transition has occurred in the past, the cached
entry would be retrieved. Rather than traverse the
two trees again, the runtime would add the members
that were added last time and remove the members
that were removed last time. Or in the alternative
scheme, it would call eval on the cached transition
code. The result is that state change between the
same two metadata trees in the same direction only
requires metadata traversal once.

9.3 Hash Consing Metadata

The state representation that facilitates our imple-
mentation is built on metadata trees with very con-
sistent structures. Because all objects in a given state
have the same tag, the same relationship with the
parent state, and often the same members, there is
signi�cant overlap between PlaidObjects' metadata
trees. The current implementation does not take ad-
vantage of this repetition. In future, it should be
possible to improve performance by hash consing the
metadata, thus saving space and avoiding time con-
suming memory allocation operations.

9.4 Other Runtime State Representa-

tions

While adding and removing members from a single
target language object is an option in JavaScript and
some other potential compilation targets, it would be
ideal to have an e�cient implementation scheme for
languages without prototype support. For this rea-
son, additional future work should focus on e�cient

32

state representation for class-based, more convention-
ally object-oriented languages like Java. With classes
able to inherit members from only a single superclass,
how can a Plaid state be created as a composition of
two other states? How can states be allowed to tran-
sition, and their members with them? While slow
solutions come readily to mind, e�cient ones do not.
The creators of Plaid are currently developing a

new Plaid to Java compiler inspired in part by our
work, but the details of its new implementation
scheme are still being determined. With a faster tar-
get language, it may well be possible to outperform
our JavaScript implementation, even with a scheme
that delays member access to some extent. Perhaps
the solution will be something as simple as emulat-
ing the State design paradigm in the compiled code.
Maybe the best approach will be keeping state vari-
ables and generating appropriate state checks. Or
perhaps there is a way to build a tree of component
states, but more e�ciently than it has been done in
the past. These approaches and many others will
provide fertile ground for continued research.

10 Conclusion

Substantial work has gone into developing e�cient
compilation methods for dynamically typed lan-
guages. As languages like Python and Ruby meet
with steadily greater success, the importance of such
work is only growing.
It is in joining state change and dynamic state

composition that Plaid introduces a new challenge
for implementation, one that has not yet been ad-
dressed in the �eld. Languages with abstract state
and composable traits have not yet been e�ciently
compiled. This work represents a �rst step towards
that goal. Our implementation � even in its non-
optimized form � produces code that is 48 times
faster than code produced with the implementation
scheme that past works on object reclassi�cation sug-
gest.
Our implementation o�ers a novel representation

for state at runtime, a representation shaped by the
need to facilitate e�cient member access. Other ap-
proaches will have to be developed for non-prototype
languages; but for languages that allow the addition
and removal of members at runtime, the use of a �at
member structure and metadata trees appears to be
a viable starting point.
There remains signi�cant room for improvement on

our implementation. Crucially, we believe our state

representation lends itself well to state-related op-
timizations. The maintenance of a metadata item,
a central store of all an object's state information,
is key to the drive to reduce state change execution
times. Further, we believe the optimizations we have
already laid out could signi�cantly improve the run
time of code produced by our implementation.
Ultimately, abstract state is a useful language fea-

ture, a feature which may reduce programmers' er-
rors, improve their awareness of objects' state spaces,
and reduce the time spent on boilerplate state checks.
An e�cient implementation of abstract state will be
an important step in establishing state-based lan-
guages' usefulness for practical purposes, and in mak-
ing state abstraction a viable option for language
users and designers.

References

[1] Gul Agha, Christopher R. Houck, and Rajen-
dra Panwar. Distributed execution of actor pro-
grams. In Proceedings of the Fourth Interna-

tional Workshop on Languages and Compilers

for Parallel Computing, pages 1�17, London,
UK, 1992. Springer-Verlag.

[2] Jonathan Aldrich, Karl Naden, and Éric Tanter.
Modular composition and state update in plaid.
In Proceedings of the 4th Workshop on MechA-

nisms for SPEcialization, Generalization and in-

HerItance, MASPEGHI '10, pages 4:1�4:4, New
York, NY, USA, 2010. ACM.

[3] Jonathan Aldrich, Joshua Sunshine, Darpan
Saini, and Zachary Sparks. Typestate-oriented
programming. In Conference proceedings on

Object-Oriented Programming Systems, Lan-

guages and Applications, Onward! '09, pages
1015�1022, New York, NY, USA, 2009. ACM.

[4] Davide Ancona, Christopher Anderson, Ferruc-
cio Damiani, Sophia Drossopoulou, Paola Gian-
nini, and Elena Zucca. A provenly correct trans-
lation of �ckle into java. ACM Trans. Program.

Lang. Syst., 29(2), 2007.

[5] Nels E. Beckman, Duri Kim, and Jonathan
Aldrich. An empirical study of object proto-
cols in the wild. In Proceedings of the Euro-

pean Conference on Object-Oriented Program-

ming, ECOOP'11, pages 2�26, Berlin, Heidel-
berg, 2011. Springer-Verlag.

33

[6] Kevin Bierho� and Jonathan Aldrich.
Lightweight object speci�cation with type-
states. In Proceedings of the 10th European

Software Engineering Conference held jointly

with 13th ACM SIGSOFT international sympo-

sium on Foundations of Software Engineering,
ESEC/FSE-13, pages 217�226, New York, NY,
USA, 2005. ACM.

[7] Craig Chambers, David Ungar, and Elgin
Lee. An e�cient implementation of self
a dynamically-typed object-oriented language
based on prototypes. In Conference proceedings

on Object-Oriented Programming Systems, Lan-

guages and Applications, OOPSLA '89, pages
49�70, New York, NY, USA, 1989. ACM.

[8] Tal Cohen and Joseph (Yossi) Gil. Three ap-
proaches to object evolution. In Proceedings of

the 7th International Conference on Principles

and Practice of Programming in Java, PPPJ '09,
pages 57�66, New York, NY, USA, 2009. ACM.

[9] Robert DeLine and Manuel Fähndrich. Types-
tates for objects. In Martin Odersky, editor, Pro-
ceedings of the European Conference on Object-

Oriented Programming, volume 3086 of ECOOP
'04, pages 465�490. Springer, 2004.

[10] Sophia Drossopoulou, Ferruccio Damiani, Mari-
angiola Dezani-Ciancaglini, and Paola Giannini.
Fickle: Dynamic object re-classi�cation. In Pro-

ceedings of the European Conference on Object-

Oriented Programming, ECOOP '01, pages 130�
149, London, UK, UK, 2001. Springer-Verlag.

[11] Stéphane Ducasse, Oscar Nierstrasz, Nathanael
Schärli, Roel Wuyts, and Andrew P. Black.
Traits: A mechanism for �ne-grained reuse.
ACM Trans. Program. Lang. Syst., 28:331�388,
2006.

[12] Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides. Design patterns: elements

of reusable object-oriented software. Addison-
Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1995.

[13] David Harel. Statecharts: A visual formalism
for complex systems. Sci. Comput. Program.,
8:231�274, 1987.

[14] Javascript microbenchmarks. http://jsperf.
com/javascript-associative-vs-non-associative-
arrays.

[15] Dennis G. Kafura and Manibrata Mukherji. The
design and implementation of concurrent in-
put/output facilities in act++ 2.0. Technical
Report TR-92-46, Virginia Polytechnic Institute
and State University, Blacksburg, VA, USA,
1992.

[16] Alan C. Kay. The Early History of Smalltalk.
SIGPLAN Notices, 28(3), 1993.

[17] Johan Lilius and Iván Porres Paltor. Formalis-
ing uml state machines for model checking. In
Proceedings of the 2nd international conference

on The Uni�ed Modeling Language: beyond the

standard, UML'99, pages 430�444, Berlin, Hei-
delberg, 1999. Springer-Verlag.

[18] Spidermonkey. https://developer.mozilla.org/
en/SpiderMonkey.

[19] Robert E. Strom and Shaula Yemini. Typestate:
A programming language concept for enhancing
software reliability. IEEE Trans. Softw. Eng.,
12:157�171, 1986.

[20] Joshua Sunshine, Karl Naden, Sven Stork,
Jonathan Aldrich, and Éric Tanter. First-class
state change in plaid. In Proceedings of the

2011 ACM international conference on Object

oriented programming systems languages and ap-

plications, OOPSLA '11, pages 713�732, New
York, NY, USA, 2011. ACM.

[21] Antero Taivalsaari. Object-Oriented Program-
ming with Modes. Journal of Object-Oriented

Programming, 6(3):25�32, 1993.

[22] David Ungar and Randall B. Smith. Self: The
power of simplicity. In Conference proceedings

on Object-Oriented Programming Systems, Lan-

guages and Applications, OOPSLA '87, pages
227�242, New York, NY, USA, 1987. ACM.

[23] V8 javascript engine. http://code.google.com/
p/v8/.

[24] V8 benchmarks. http://v8.googlecode.com/svn/
data/benchmarks/v7/.

34

