
Rousillon: Scraping Distributed Hierarchical Web Data
Sarah E. Chasins

UC, Berkeley
schasins@cs.berkeley.edu

Maria Mueller
University of Washington

mm20@cs.washington.edu

Rastislav Bodik
University of Washington
bodik@cs.washington.edu

ABSTRACT
Programming by Demonstration (PBD) promises to enable
data scientists to collect web data. However, in formative
interviews with social scientists, we learned that current PBD
tools are insufficient for many real-world web scraping tasks.
The missing piece is the capability to collect hierarchically-
structured data from across many different webpages. We
present Rousillon, a programming system for writing complex
web automation scripts by demonstration. Users demonstrate
how to collect the first row of a ‘universal table’ view of a
hierarchical dataset to teach Rousillon how to collect all rows.
To offer this new demonstration model, we developed novel
relation selection and generalization algorithms. In a within-
subject user study on 15 computer scientists, users can write
hierarchical web scrapers 8 times more quickly with Rousillon
than with traditional programming.

INTRODUCTION
Web data is becoming increasingly important for data scien-
tists [52, 34]. Social scientists in particular envision a wide
range of applications driven by web data:

“forecasting (e.g., of unemployment, consumption
goods, tourism, festival winners and the like), nowcast-
ing (obtaining relevant information much earlier than
through traditional data collection techniques), detecting
health issues and well-being (e.g. flu, malaise and ill-
being during economic crises), documenting the match-
ing process in various parts of individual life (e.g. jobs,
partnership, shopping), and measuring complex pro-
cesses where traditional data have known deficits (e.g.
international migration, collective bargaining agreements
in developing countries).” [3]

To use web datasets, data scientists must first develop web
scraping programs to collect them. We conducted formative
interviews with five teams of data scientists to identify design
requirements for web data collection tools. The first critical
requirement: do not require knowledge of HTML, DOM trees,
DOM events, JavaScript, or server programming. Our forma-
tive interviews revealed that when data scientists attempt to
use traditional web scraping libraries – e.g., Selenium [49],
Scrapy [48], Beautiful Soup [46] – they often find themselves
lacking the requisite browser expertise, especially when they
need to reverse engineer browser-server communication.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
UIST ’18, October 14–17, 2018, Berlin, Germany

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-5948-1/18/10. . . $15.00
DOI: https://doi.org/10.1145/3242587.3242661

Webpage 2
(Actors)

actor 1

actor 2

actor 3

...

Webpage 2
(Actors)

actor 1

actor 2

actor 3

...

movie 2

movie 3

movie 1

...

Data in Webpages Target Output Data

movie 2

movie 1 actor 1

actor 2

actor 3

...

movie 1

movie 1

movie 1

actor x

...movie 2

... ...

Webpage 2
(Actors)

actor 1

actor 2

actor 3

...

Webpage 1
(Movies)

Figure 1. An example of a distributed, hierarchical web dataset. The
goal is to collect a list of movies and, for each movie, a list of actors.
The placement of data cells in webpages appears at left; one webpage
lists multiple movies, and each movie links to a details webpage, which
lists the movie’s cast. The target output data appears at right; each
row includes a movie and an actor who acted in the movie. The data is
distributed because it appears across multiple pages: one page that lists
movies and a set of movie details pages. The data is hierarchical because
the root is a parent of multiple movies and each movie is a parent of
multiple actors. In our formative study, 100% of data scientists’ target
web datasets were distributed, and 50% were hierarchical.

Programming by Demonstration (PBD) delivers on this first
design requirement, offering web automation without requir-
ing users to understand browser internals or manually reverse
engineer target pages. The PBD approach has produced great
successes in the web automation domain, most notably Co-
Scripter [30], Vegemite [32], and iMacros [21], but also oth-
ers [33, 50, 22, 20, 29]. CoScripter and iMacros offer record-
and-replay functionality; users record themselves interacting
with the browser – clicking, entering text, navigating between
pages – and the tool writes a loop-free script that replays the
recorded interaction. Vegemite adds a relation extractor, a
tool for extracting tabular data from a single webpage into
a spreadsheet. By putting its relation extractor and the Co-
Scripter replayer together, Vegemite lets users users extend
a data table with new columns; users can invoke a loop-free
CoScripter script on each row of an extracted table, using the
row cells as arguments to the script and adding the return value
as a new cell. The end result is a PBD system that can collect
tables of data even if cells come from multiple pages.

Our formative interviews revealed several key design require-
ments, but our interviewees emphasized that one in particular
is critical to making a scraping tool useful and has not yet
been met by prior PBD tools: collecting realistic, large-scale
datasets. In particular, scrapers must handle distributed data,
i.e., data that is dispersed across multiple webpages, and they
must handle hierarchical data, i.e., tree-structured data.

Distributed Data
The data scientists in our formative interviews indicated that
they care about distributed data – that is, datasets in which the

1

https://doi.org/10.1145/3242587.3242661

data that constitutes a single logical dataset is spread across
many physical webpages. For instance, to scrape information
about all movies in a box office top-10 list, we may scrape the
title of each movie from the list page, then follow a link to the
movie’s details page to scrape the name of the movie’s director,
then follow a link to the director’s profile page to scrape the
director’s bio. In this case, each of the three columns (movie
title, director name, director bio) appears on a different page.

In general, web scraping includes two subtasks:

• Single-page data extraction: Given a page, collecting struc-
tured data from it; e.g., finding an element with a given
semantic role (a title, an address), extracting a table of data.

• Data access: Reaching pages from which data should be ex-
tracted, either by loading new pages or causing new data to
be displayed in a given page; e.g., loading a URL, clicking a
link, filling and submitting a form, using a calendar widget,
autocomplete widget, or other interactive component.

Many PBD scraping tools only write single-page extrac-
tion programs (e.g., Sifter [19], Solvent [41], Marmite [53],
FlashExtract [29], Kimono [22], import.io [20]). A few PBD
scraping tools write programs that also automate data access;
in particular, record and replay tools (e.g., Ringer [4], Co-
Scripter [30], iMacros [21]) and the Vegemite mashup tool [32]
can write programs that do both extraction and data access.

Because distributed datasets split logically connected data
points across many pages, a PBD tool that aims to scrape
realistic data must synthesize scripts that automate data access.

Hierarchical Data
Our formative interviews also revealed that data scientists want
to collect hierarchical web datasets. See Fig. 1 for an example
of a hierarchical dataset. The task is to scrape, starting from
a list of movies, the title of each movie, then for all actors in
each movie, the name of each actor. (Note that this data is
also distributed; the list of actors for each movie appears on
a movie-specific page, not on the page that lists all movies.)
To scrape this data, we need a program with nested loops:
an outer loop to iterate through movies and an inner loop to
iterate through actors for each movie.

To scrape distributed data, we need to automate data access.
To scrape hierarchical data, we need nested loops. However,
to date, PBD scrapers that support data access all synthesize
scripts in languages that lack loops. The Ringer [4] language,
iMacros language [21], and CoScripter language [30] all lack
loops. Vegemite [32] uses the CoScripter language but comes
closer to offering loops; by offering a UI that allows users to
‘select’ any subset of rows in a spreadsheet and run a loop-free
CoScripter script on the selected rows, Vegemite can execute
one loop, even though the output program presented to the
user is loop-free. However, this approach does not extend to
nested loops. One could use Vegemite to extract an initial table
of movies, then run a script to extend each movie row with
the top-billed actor, but could not produce the full dataset of
(movie, actor) pairs depicted in Fig. 1; the script itself cannot
extract or loop over tables. These tools not only synthesize
programs that lack nested loops but also – because they use
loop-free languages – prevent users from adding loops to the
straight-line programs they output.

Introducing nested loops is a core outstanding problem in PBD.
Even for domains outside of scraping, most PBD systems

cannot produce them. Some, like Vegemite, lack algorithmic
support (e.g., Eager [10]). Others use algorithms that could
add nested loops but prevent it because it makes synthesis slow
(e.g., FlashFill [14]).

PBD systems that can produce programs with nested loops typ-
ically require users to identify loop boundaries (e.g., SMARTe-
dit [28]) or even whole program structures (e.g., Sketch and
other template approaches [51]). This is difficult and error-
prone. In the SMARTedit study, only 1 of 6 participants could
add a nested loop by identifying boundaries, even though the
participants were CS majors [27]. Designing interactions that
enable automatic nested loop synthesis is an open problem.

To produce scraping programs with nested loops via PBD
requires innovations in:

• Algorithm design: A synthesis algorithm that can write
programs with nested loops based on a demonstration.

• Interaction design: An interaction model that produces
demonstrations amenable to the synthesis algorithm.

This paper presents contributions in both algorithm and inter-
action design. In particular, we introduce a novel interaction
model that makes the synthesis problem tractable. In our in-
teraction model, a user demonstrates one row of the ‘join’ of
their target output tables. For the Fig. 1 movie and actor data,
this is the title of the first movie and name of the first actor in
the first movie – the first row in the table at the right. Say we
want to scrape a list of cities, for each city a list of restaurants,
for each restaurant a list of reviews; we demonstrate how to
collect the first city’s name, the name of the first restaurant in
the first city, then the first review of that first restaurant.

Given a demonstration of how to collect a row of the joined
data, our custom synthesizer produces a scraping program
with one loop for each level of the data hierarchy. A Relation
Selector algorithm leverages common web design patterns to
find relations (e.g., movies, actors, cities, restaurants, reviews).
A Generalizer algorithm produces a loop for iterating over
each relation. This lets our approach introduce arbitrarily
nested loops without user intervention. Although our Relation
Selector is a web-specific solution, designed to take advantage
of web design patterns, our interaction model and Generalizer
are not specialized for the web. The success of our approach
for the web scraping domain suggests a general strategy: ask
the user to demonstrate one iteration of each nested loop
(in our case, collect one row of the joined output table) and
use domain-specific insights to identify objects that should be
handled together (in our case, the rows of a given relation).

Rousillon
This paper presents the design of Rousillon, a PBD tool that
uses a novel interaction model and novel synthesis algorithms
to collect distributed hierarchical data from the web. Rousillon
produces a web scraping program from a single user demon-
stration. It is the first PBD tool that can collect hierarchical
data from a tree of linked webpages.

Fig. 2 shows a usage scenario:

(a) The user opens the Rousillon browser extension.

(b) The user starts a demonstration and is asked to collect the
first row of the target dataset.

2

b

c

d

e

ab

c

d
e

Rousillon Control Pane Webpage

Figure 2. Using Rousillon. The user starts by clicking on (a), the icon
for the Rousillon Chrome extension, which opens (b), the control pane
at left. In (c), the normal browser window, the user demonstrates how to
interact with pages, collect data from pages, and navigate between pages.
The user collects the first row of the target dataset, which appears in the
preview pane, (d). When the user clicks on (e), the ‘Stop Recording’
button, Rousillon synthesizes a script that collects the full dataset.

(c) In the browser window, the user demonstrates how to col-
lect data from pages, interact with page UX elements, and
navigate between pages. In this example, the user loads a
webpage with a list of movies, collects the title, rating, and
length of the first movie, clicks on the movie title to load a
movie-specific webpage, then collects the name and role of
the first actor in the movie.

(d) As the user scrapes new data cells, the cells are added to
the preview box in the control panel.

(e) The user ends the demonstration by clicking on the ‘Stop
Recording’ button. Rousillon uses the demonstration of how
to scrape the first movie and the first actor of the first movie
to (i) detect relations (movies, actors) and (ii) synthesize a
scraping script that iterates through these two relations using
the demonstrated interactions. After this process, the user can
inspect and edit a blocks-based visual programming language
representation of the synthesized script in the control panel.

The Rousillon architecture is depicted in Fig. 3. The input is
a single user demonstration, the recording of how to collect
the first row of ‘joined’ data. From the trace of DOM events
triggered by the user’s interactions, a web record-and-replay
tool, Ringer [4], produces a straight-line replay script in the
low-level Ringer language. From this single input, Rousil-
lon extracts the inputs it needs for synthesizing single-page
data extraction code and data access code. From information
about the webpage elements with which the user interacted,
Rousillon’s Relation Selector identifies relations over which
the user may want to iterate. Rousillon’s Reverse Compiler
translates the loop-free Ringer program into a loop-free pro-
gram in a more readable language – Helena, a high-level web
automation language [7]. Finally, Rousillon’s Generalizer
combines the straight-line Helena program with the relations
identified by the Relation Selector and produces a Helena
program with loops over the relations. This paper describes
the interaction model for producing the input demonstration
and the algorithms that drive Rousillon’s Relation Selector,
Reverse Compiler, and Generalizer.

Contributions
This paper presents the following contributions:

• A set of design requirements for end-user web scraping
tools, discovered via formative interviews with five teams
of data scientists.

• For the domain of data-access web scraping, the first PBD
tool that synthesizes programs with loops and the first
PBD tool that collects distributed hierarchical data.

• A user study demonstrating that programmers can write
scraping programs for distributed hierarchical data 8x more
quickly with PBD than with traditional programming.

RELATED WORK
We discuss related work from a broad space of web automation
tools, with a special emphasis on tools that use PBD.

PBD Single-Page Data Extraction
PBD tools for data extraction typically ask users to label DOM
nodes of one or more sample webpages, then produce extrac-
tion functions that take a webpage as input and produce DOM
nodes as output. For instance, a web relation extractor takes as
input a page and a subset of the page’s DOM nodes that consti-
tute part of a logical table, labeled with their row and column
indexes. The output is a function that extracts a table of DOM
nodes from the labeled page. Vegemite’s VegeTable [32] and
many industrial tools – e.g., FlashExtract [29], Kimono [22],
and import.io [20] – offer PBD relation extraction.

Other PBD single-page extractors collect non-relational data.
For instance, to extract product data, a user might label the
product name and product price on one or more product pages.
The synthesized output is a function that takes one product
page as input and produces a name and price as output. Many
tools offer this functionality, from the familiar Sifter [19],
Solvent [41], and Marmite [53] tools to a vast body of work
from the wrapper induction community [11, 5, 26, 36, 54, 25,
42, 12, 2, 24, 37, 17].

Alone, extractors cannot collect distributed data because they
cannot synthesize data access. The synthesized programs
do not load pages; they take one already-downloaded page
as input. By definition, distributed data includes data from
multiple pages, and finding and accessing those pages is part
of the scraping task. Thus, while data extraction programs
may be used within a distributed scraper, they cannot automate
the entire collection process.

PBD Data Extraction + Data Access
Most PBD data access tools have focused on record and replay.
A web record and replay tool or replayer takes as input a
recording of a browser interaction and produces as output a
script for replaying that same interaction. Ringer [4], Selenium
Record and Playback [50], CoScripter [30], and iMacros [21]
all provide this functionality, as do many others [23, 33, 18, 31,
44, 13], although some require debugging by a DOM expert
and thus arguably belong outside of the PBD category.
Traditional PBD data access tools focus strictly on replaying
the same loop-free interaction and thus cannot be used for
large-scale web automation. The exception is the seminal
Vegemite tool [32], described in the introduction. Because it
can collect distributed data and generalize beyond pure replay,
Vegemite comes closest of all existing PBD scraping tools

3

user demonstration

program
with loops

Helena

low-level
program

Ringer

relations

high-level
program

Helena

Figure 3. The Rousillon workflow. A user provides a single input demonstration, recording how to collect the first row of the target dataset. For instance,
to collect the dataset depicted in Fig. 1, the user navigates to a URL that loads a list of movies, collects the first movie’s title, clicks the first movie’s
title to load the movie’s details page, collects the name of the first actor in the first movie, then ends the recording. A Recorder converts the user’s
demonstration into a program that replays the demonstrated interaction; it collects the first row. This replay program is the input to our PBD tool,
Rousillon. Our Relation Selector uses the interacted elements (e.g., movie name, actor name) to identify relations on the target webpages; here, it finds
a relation of movies on page one and actors on page two. The input replay program uses the Ringer [4] language, which is low-level and unreadable, so
our Reverse Compiler translates from Ringer to the readable, high-level Helena web language. Finally, our Generalizer uses the selected relations (e.g.,
movies, actors) and the straight-line Helena program to write a Helena program that collects not only the first row of the data but all rows of the data.

to meeting the needs identified in our formative study. The
key differences between Vegemite and Rousillon are that Veg-
emite:
(i) cannot add nested loops. See the introduction for a dis-
cussion of why it cannot add them, why adding them is a key
technical challenge, why they are critical to scraping hierar-
chical data, and why hierarchical data is desirable.
(ii) uses a divided interaction model, requiring one demon-
stration for data extraction (relation finding) and a separate
demonstration for data access (navigation). Users reported
“it was confusing to use one technique to create the initial
table, and another technique to add information to a new col-
umn” [32]; early versions of Rousillon used a divided inter-
action model and received similar feedback. Thus, Rousillon
accepts a single demonstration as input and extracts both data
extraction and data access information from this one input.
(iii) uses a less robust replayer, CoScripter, which was de-
signed for an earlier, less interactive web. CoScripter’s high-
level language makes its programs readable but fragile in the
face of page redesigns and AJAX-heavy interactive pages.
On a suite of modern replay benchmarks, Ringer (the re-
player Rousillon uses) replays 4x more interactions than Co-
Scripter [4]. To use Vegemite on today’s web, we would need
to reimplement it with a modern replayer that uses low-level
statements for robustness; thus, to recover readability, Veg-
emite would need a reverse compiler like Rousillon’s.
(iv) can replace uses of typed strings only. E.g., Vegemite
can turn a script that types “movie 1” in node into a script that
types “movie 2” in node. In contrast, Rousillon can replace
uses of typed strings, URLs, and DOM nodes (e.g., click on
node2 instead of node1). The browser implementation de-
tails that make DOM node replacement more challenging than
string replacement are out of scope of this paper, so although
this substantially affects the possible applications of Vegemite,
this paper does not emphasize this last distinction.

Another PBD data access approach uses site-provided APIs
rather than webpage extraction [6]. This is a good approach
if APIs offer the target data. However, this is rare in practice;
none of the 10 datasets described in our formative study are
available via API. (Only one dataset used a site that offers an
API, and that site limits the amount of API-retrievable data to
less than the team wanted and less than its webpages offer).
Web Automation Languages
There are many Domain Specific Languages (DSLs) for scrap-
ing, most implemented as libraries for general-purpose lan-

guages: Selenium [49] for C#, Groovy, Java, Perl, PHP,
Python, Ruby, and Scala; Beautiful Soup [46] and Scrapy
[48] for Python; Nokogiri [38] and Hpricot [16] for Ruby;
HXT [15] for Haskell. Some drive a browser instance and em-
phasize human-like actions like clicks and keypresses; others
emphasize methods for parsing downloaded DOM trees, offer
no mechanisms for human-like interaction, and thus require
users to reverse engineer any relevant AJAX interactions (e.g.,
BeautifulSoup, Scrapy). To use any of these DSLs, program-
mers must understand DOM trees and how to traverse them –
e.g., XPath or CSS selectors – and other browser internals.

Partial PBD
While the traditional web automation DSLs described above
do not use PBD, a class of GUI-wrapped DSLs do mix PBD
with traditional programming. Mozenda [35] and Parse-
Hub [43] are the best known in this class, but it also in-
cludes tools like Portia [47], Octoparse [40], and Kantu [1].
With these hybrid tools, users builds a program statement-
by-statement, as in traditional programming, but they add
statements via GUI menus and buttons, rather than with a text
editor or mainstream structure editor. The user selects the
necessary control flow constructs and other statements at each
program point, as in traditional programming. However, users
write node extraction code via PBD. When they reach a point
in the program at which they want to use a node or table of
nodes, they use the GUI to indicate that they will click on
examples, and the tool writes a function for finding the rele-
vant node or nodes. This class of tools occupies an unusual
space because users need to reason about the structure of the
program, the statements they will use – essentially they need
to do traditional programming – but because these tools’ GUIs
support such small languages of actions, they do not offer the
highly flexible programming models of traditional DSLs.

Rousillon Building Blocks
Rousillon makes use of two key prior works, Ringer [4] and
Helena [7, 9]. Ringer is a web replayer. The input is a user
interaction with the Chrome browser, and the output is a loop-
free program in the Ringer programming language that auto-
mates the same interaction. Rousillon uses Ringer to record
user demonstrations; the Ringer output program is the input
to the Rousillon synthesizer. Helena is a high-level web au-
tomation language. With statements like load, click, and
type, it emphasizes human-like interaction with webpages.
Rousillon expresses its output programs in Helena.

4

FORMATIVE INTERVIEWS AND DESIGN GOALS
To explore whether current languages and tools for web au-
tomation meet data scientists’ needs, we conducted formative
interviews with five teams of researchers at a large U.S. univer-
sity, all actively seeking web data at the time of the interviews.
The teams come from a variety of disciplines. One team is
comprised primarily of sociologists with two collaborators
from the Department of Real Estate. All other teams were
single-field teams from the following departments: Public
Policy, Economics, Transportation Engineering, and Politi-
cal Science. We group data collection approaches into three
broad strategies: (i) automatic collection with hand-written
programs, (ii) manual collection, and (iii) automatic collection
with PBD-written programs. The primary focus of each in-
terview was to explore whether a team could meet its current
data needs with each strategy.

All teams considered hand-written web scraping programs out
of reach, despite the fact that four of five teams had at least
one team member with substantial programming experience.
The Political Science team even included a programmer with
web scraping experience; he had previously collected a large
dataset of politicians’ party affiliations using Python and Beau-
tiful Soup [46]. He had attempted to collect the team’s new
target dataset with the same tools, but found his new target
website made extensive use of AJAX requests, to the point
where he could not reverse engineer the webpage-server com-
munication to retrieve the target data. More commonly we
saw the case where one or more team members knew how to
program for a non-scraping domain – e.g. visualization, data
analysis – but had attempted scraper programming without suc-
cess because they lacked familiarity with DOM and browser
internals. Team members found traditional web automation
scripts not only unwritable but also unreadable.

In contrast, two teams considered manual data collection a
viable strategy. One team went so far as to hire a high school
intern to collect their data by sitting in front of the browser
and copying and pasting text from webpages into a spread-
sheet. Because their dataset was relatively small – only about
500 rows – this was manageable, albeit slow. Another team
scaled down their target dataset to make it small enough to be
collected by hand once a week, but the resultant dataset was
much smaller than what they initially wanted, and the collec-
tion process still took hours of tedious copying and pasting
every week. For all other teams, the target dataset was so large
that they did not consider manual collection feasible.

For PBD tools, the verdict was mixed. On the one hand, all
teams included at least one proficient browser user who felt
comfortable demonstrating how to collect a few rows of the
team’s target datasets, so all teams had the skills to use them.
On the other hand, most of the target collection tasks could
not be expressed in the programming models of existing PBD
web automation tools.

Each team had defined between one and three target datasets.
Between them, the five teams had defined 10. All were dis-
tributed datasets, and all required scraping at least 500 web-
pages. Of the 10 target datasets, only two could be collected
with existing PBD web automation tools. With a hypothetical
variation on Vegemite that extends it (i) from parameterizing
only typed strings to parameterizing target DOM nodes and
(ii) from handling only stable input relations to handling live
relation extraction across many webpages, we might collect as

many as three more datasets. However, even this hypothetical
improved tool would still fail to express a full half of the target
datasets, because five of the 10 datasets are hierarchical.

Based on the challenges revealed in our interviews and the
data scientists’ stated preferences about programming style,
we formulated the following design goals:

• D1 Expertise: Do not require knowledge of HTML, DOM
trees, DOM events, JavaScript, or server programming.

• D2 Distributed Hierarchical Data: Handle realistic
datasets. In particular, collect hierarchical data, includ-
ing hierarchical data that can only be accessed via arbitrary
webpage interactions and navigating between pages.

• D3 Learnability: Prioritize learnability by tool novices
over usability by tool experts.

Guided by these goals, we designed the Rousillon PBD web
scraper, which can collect all 10 of the web datasets targeted
by the teams in our formative study.

ROUSILLON INTERACTION MODEL
To synthesize a scraper for distributed, hierarchical data, we
need to acquire the following information from the user:

1. how to interact with and navigate to pages (data access)

2. all relations over which to iterate (data extraction)

3. the links between relations, the structure of the hierarchy

Whatever input a PBD tool takes, it must solicit all of these.

Single-Demonstration Model for Learnability. One possi-
ble approach is to require users to complete a different type of
demonstration for each of the three information types. How-
ever, users find it hard to learn divided interaction models
in this domain [32]. A multi-demonstration approach thus
inhibits design goal D3 (prioritizing learnability). To offer a
learnable interaction, PBD scrapers should aim to use only
one demonstration.

Rousillon makes a contract with the user, restricting the form
of the demonstrations they give, and in exchange requesting
only one demonstration. In particular, we designed Rousillon
to accept demonstrations in which users collect the first row
of all relations in the target output data; essentially, users
must demonstrate the first iteration of each loop that should
appear in the final scraping program. A demonstration of this
form has the potential to offer all of the requisite information
types: (1) to reach the first row data, the user demonstrates
all interaction and navigation actions; (2) the user touches
all relations of interest; and (3) the order in which the user
touches relations implicitly reveals how they are linked.

With the form of the input demonstration fixed, a few key
interaction design problems arise: communicating what data
users can scrape from a given element, communicating what
loops users can add, and communicating how Rousillon’s
scraping program will operate.

Gulf of Execution. To use a PBD scraper well, users must
know what data they can collect and what loops they can
add. What data can be scraped from a photograph? From
a canvas element? If a user interacts with the title and year
of one movie in a list, will the scraper know to generalize to
interacting with the titles and years of all movies? To reduce

5

the gulf of execution [39], a PBD scraper should help users
answer these questions about how to use the system.

Gulf of Evaluation. Users also benefit from understanding
the program a PBD scraper is building. In particular, based on
the demonstration provided so far, what kind of output data
will the scraper produce? Short of completing the demonstra-
tion and running the output program, how can users learn if
the program will collect the data they want? To reduce the gulf
of evaluation [39], a PBD scraper should help users answer
this question about the current state of the system.

Interface
Here we describe the interface of the Rousillon PBD scraping
tool and how it addresses key interaction design problems.

Implementation. Rousillon is a Chrome extension, available
at http://helena-lang.org/download and open sourced at https:
//github.com/schasins/helena. We designed Rousillon as a
Chrome extension to make installation easy and fast. Chrome
extension installation is a drag-and-drop interaction, so this
design choice reduces the setup and configuration complexity
relative to classical web automation tools like Selenium.

Activation. The user activates the Rousillon browser exten-
sion by clicking on its icon in the URL bar (see Fig. 2(a)).
Upon activation, Rousillon opens a control panel from which
the user can start a new recording, load saved programs, or
download data from past program runs. Because the focus of
this paper is on using PBD to write scrapers, we discuss only
the recording interaction for writing new programs.

Recording. Users begin by clicking a ‘Start Recording’ but-
ton. This opens a fresh browser window in which all the user’s
webpage interactions are recorded. Users are instructed to
collect the cells of the first row of their target dataset.

Scraping. Users can scrape data by holding the ALT key and
clicking on the webpage element they want to scrape (see
Fig. 4). This indicates to Rousillon that the element’s content
should be the next cell in the first row of the output dataset.

Gulf of Execution. For the most part, webpages look the same
during recording as in everyday browsing. However, we make
two modifications to help users discover what Rousillon can
do with their recorded actions, to bridge the gulf of execution.

• What can we scrape? Hovering over any element in a
webpage displays an in-site output preview beneath the
element, a hypothetical cell (see Fig. 4). This previewed
cell communicates the content that Rousillon will extract
if the user decides to scrape the element. The user learns
what scraping an element would mean without having to
write and then run a program that scrapes it. Previews
are especially useful for (i) elements with text content that
comes from alt and title attributes rather than displayed
text and (ii) non-text elements (e.g. images are non-text
elements, so Rousillon collects image source URLs).

• What loops can we add? Hovering over any element that
appears in a known relation highlights all elements of the
known relation (see Fig. 5). This emphasis of relation
structure communicates that Rousillon knows how to repeat
interactions performed on a row of the relation for all rows
of the relation; it gives users additional control over the
PBD process by indicating they can interact with a given
set of elements to add a given loop in the output program.

a

b

c

Rousillon Control Pane Webpage

Figure 4. Scraping data. Boxes on the left show snippets of the Rousillon
control pane at various points during demonstration. Boxes on the right
show snippets of the webpage with which the user is interacting, at the
same points in time. a) The user has already added a movie title, PG
rating, and star rating to the first row of data, shown in the first row
preview at left. In the webpage, we see an actor’s picture and link, but
the user is not hovering over them. b) An in-site output preview. When
the user hovers over an element, an inline preview shows a cell the user
could add to the first row. Here the user hovers over the actor name. c)
The user holds the ALT key and clicks on the actor name. The text from
the preview cell is added to the first row of data (see preview at left).

a

b

Figure 5. A centralized
server stores relations
used in prior Rousil-
lon programs; Rousil-
lon uses stored rela-
tions to communicate
about loops it can add.
When a user hovers
over a known relation
during demonstration,
Rousillon highlights the
relation to indicate it
knows how to loop over
it. Here, (a) shows an
IMDb.com page, 1977’s
top box office movies,
and (b) shows the same
page with the movies re-
lation highlighted.

Gulf of Evaluation. When the user scrapes a new element,
Rousillon adds its content to a preview of the first row, dis-
played in the control pane (see Fig. 4). This preview of the
output data reduces the gulf of evaluation by giving the user
information about the program Rousillon is building. Rousil-
lon’s output program will always produce the previewed row
of data as its first output row, as long as the structure and
content of the webpages remain stable. If at any point the
user realizes that the preview does not show the intended data,
they can identify without running the program – without even
finishing the demonstration – that the current demonstration
will not produce the desired program.

Finishing. When the user ends a demonstration by clicking
the ‘Stop Recording’ button (see Fig. 2(e)), the recorded inter-
action is passed as input to Rousillon’s PBD system, described
in the Algorithms section. The output of the PBD system is a
program in the high-level Helena web automation language;
the control pane displays this program in a Scratch-style [45]
blocks-based editor (see output in Fig. 3). At this stage, the
user can edit, run, and save the new program.

ALGORITHMS
In this section, we describe three key Rousillon components:
the Reverse Compiler, Relation Selector, and Generalizer. Fig.
3 shows how these components interact to write a scraping
program based on an input demonstration.

6

http://helena-lang.org/download
https://github.com/schasins/helena
https://github.com/schasins/helena

Reverse Compiler

keypress
textInput

keyup

mouseup

...

...

keydown

Low-level Ringer Statements High-level Helena Statements

waituntil server response matching hostname=='google.com'
 && path=='ajaxv2' && params.id=='bar':
 dispatch input_H on node matching {type:'INPUT', ...}

mousedown

input

Problem Statement: Traditional replayers write high-level,
readable scripts but are fragile on today’s interactive, AJAX-
heavy webpages; modern replayers work on interactive pages
but write low-level, unreadable programs.

Our Solution: Use a modern replayer for robustness, but
reverse-compile to the Helena language to recover readability.

Rousillon uses Ringer to record user demonstrations (Recorder
in Fig. 3). We chose Ringer because it outperforms alternatives
on robustness to page content and design changes [4]. How-
ever, the output of a Ringer recording is a script in Ringer’s
low-level language, with statements like the red-outlined state-
ment in the Reverse Compiler figure. With one statement for
each DOM event – e.g., keydown, mouseup – a typical Ringer
script has hundreds of statements, each tracking more than 300
DOM node attributes. This exhaustive tracking of low-level
details makes Ringer scripts robust, but it also makes them
unreadable even for DOM experts. To meet Design Goal D1,
sheltering users from browser internals, we hide these details.

The Reverse Compiler translates Ringer programs into a high-
level web automation language, Helena. It produces high-
level statements that a user can read, but whose semantics
are determined by associated snippets of code in the Ringer
language – the low-level statements that make replay robust.

The Reverse Compiler slices the input Ringer program into
sequences of consecutive statements that operate on the same
target DOM node and are part of one high-level action; then it
maps each sequence of Ringer statements to a single Helena
statement. Each Ringer statement includes the type, t, of its
DOM event and the DOM node, n, on which it dispatches
the event. Browsers use a fixed set of DOM event types, T ,
and Helena has a fixed set of statements, H. Rousillon uses
a map m : T 7→ H that associates each type in T with a high-
level Helena statement; for example, keydown, keypress,
textInput, input, and keyup all map to Helena’s type
statement. Rousillon uses m to label each Ringer statement:
(t,n)→ (t,n,m(t)). Next it slices the Ringer program into
sequences of consecutive statements that share the same n and
m(t)1. Because many event types are mapped to a single He-
lena statement type, the Ringer sequences are typically long.
Next, the Reverse Compiler writes the Helena program; it
maps each sequence of Ringer statements to a single Helena
statement that summarizes the effects of the whole Ringer
sequence. The Reverse Compiler figure illustrates this pro-
cess; note that a slice of typing-related Ringer statements are
mapped to a single Helena statement: type "H" in p1.
1This is a slight simplification. Statements for DOM events that are
invisible to human users (e.g., focus), can have different n.

curSize = |N|
while curSize > 0 do

S = subsetsOfSize(N, curSize)
for subset in S do

rel = relationExtractor(w, subset)
if rel then

return rel
end
curSize = curSize - 1

end

Algorithm 1. Relation Se-
lector algorithm. Input: w,
a webpage, and N, a set of
interacted nodes in w. Out-
put: rel, a relation of nodes
in w that maximizes:
|{n : n ∈ N∧n ∈ rel[0]}|

Each Helena statement stores its Ringer sequence, which the
Helena interpreter runs to execute the statement. Thus the
Reverse Compiler’s output is a loop-free Helena program that
runs the same underlying Ringer program it received as input.

Relation Selector

Relation Selector Relation Extractor

nu
ll

Problem Statement: To support a single-demonstration in-
teraction model, we must determine for each recorded ac-
tion (i) whether the action should be repeated on additional
webpage elements and (ii) if yes, which additional webpage
elements. In short, we must find relations relevant to the task.

Our Solution: A relation selection algorithm to extract infor-
mation about relations from a straight-line interaction script.

The central goal of our Relation Selector is to predict, based
on a single loop-free replay script, whether the script interacts
with any relations over which the user may want to iterate.
Our Relation Selector approach has two key components:

• Relation Selector: The top-level algorithm. It takes a re-
play script as input and produces a set of relations as output.

• Relation Extractor: A subroutine. It takes a set of nodes
as input. If it can find a relation that has one column for
each input node, it returns the relation; if not, it returns null.

Relation Selector. The Relation Selector uses a feedback loop
with the relation extractor. It starts by identifying the set of all
DOM nodes with which the input replay script interacts, then
groups them according to the webpages on which they appear.
For each webpage w and its set of nodes N, the Relation
Selector applies Algorithm 1. Essentially the Relation Selector
repeatedly calls the relation extractor on subsets of N, from the
largest subsets to the smallest, until it finds a subset of nodes
for which the relation extractor can produce a relation. For
instance, if a user interacted with a movie title, movie rating,
and webpage title on a single webpage, the Relation Selector
would first seek a relation that includes all three of those nodes
in the first row. If the relation extractor fails to find a relation
(the likeliest outcome given standard web design patterns), the
Relation Selector tries subsets – e.g., subsets of size two until
it finds a well-structured relation that includes the movie title
and movie rating (but not the page title) in the first row.

Relation Extractor. Our custom relation extractor is closely
related to the relation extractors [53, 29, 22, 20] discussed in
Related Work, with one key difference: it is designed to excel
in the case of having only one row of data. We found that prior
relation extractor techniques often required at least two rows
of data as input. Since being able to suggest a good relation
given only a single row of data is critical to our interaction

7

model, we developed a custom relation extractor adapted to
this constraint. The key insight is to fingerprint the structure
of the input cells’ deepest common ancestor (DCA), then find
a sibling of the DCA that shares the structure fingerprint (see
illustration in Appendix A). For instance, if the path through
the DOM tree from the DCA n to an actor name is p1 and
the path from n to the actor’s role is p2, the relation extractor
would seek a sibling of n that also has descendant nodes at the
p1 and p2 positions. Using the sibling node as a second row
of labeled cells, we can apply the same techniques that drive
prior relation extractors.

Saved Relations. A centralized server stores a database of
relation extractors used in past Rousillon programs. When
the Relation Selector chooses which relation to extract from a
page, it considers both freshly identified relations and stored
relations that originated on a related page and function on the
current page. It ranks them, preferring relations that: include
as many of the input nodes as possible, have many rows on the
current page, and have been used in prior scripts. With this
approach, users can expect that Rousillon already knows how
to find relations on many mainstream sites.
Generalizer

relation 1 cell 1

relation 2 cell 1

relation 1 cell 2

non-relation node

relation 1 cell 1

relation 2 cell 1

relation 1 cell 2

non-relation node

Straight-line Helena
Program

Loop Start, End Points

relation 1 cell 1

relation 2 cell 1

relation 1 cell 2

Relations

...

...

Problem Statement: Scraping hierarchical data requires
nested loops, with one loop for each level of the hierarchy.

Our Solution: A Generalizer that introduces nested loops.

The Generalizer takes a loop-free Helena program and a set
of relations as input. It has three roles: (i) adapt the program
to store output data, (ii) for each relation, determine where to
insert a loop over the relation, and (iii) parameterize the loop
bodies to work on loop variables rather than concrete values.

Output Statement. The input program collects data from
DOM nodes but does not store the data or accumulate any
output. The Generalizer appends an output statement at the
tail of the Helena program to add a row of data to an output
dataset; it adds a cell in the output statement for each scrape
statement in the program. Thus a program that scrapes a movie
title and an actor name produces [movie, actor] rows. If the
actor is scraped in a loop, the program produces multiple
rows with the same movie but different actors. This builds
a ‘universal relation’ view of the hierarchical data, a join
over all relations. This meets our data science collaborators’
requests for tabular data that they can manipulate with familiar
spreadsheet and statistical software.

Loop Insertion. The input program is loop-free, but the out-
put program should iterate over all relations identified by the
Relation Selector. To add loops, the Generalizer first identifies
whether each Helena statement’s target node appears in any
relations. To identify the hierarchical structure, we produce
a total order over relations based on the order in which their
nodes appear in the program. The first relation whose cells are
used is highest in the hierarchy (associated with the outermost
loop); the relation that sees its first cell use only after all other
relations have been used is lowest in the hierarchy (associated

with the innermost loop). For each relation in the hierarchy,
we insert a loop that starts immediately before the first use of
the relation’s cells and ends after the output statement.

Parameterization. The input program operates on cells of
the first dataset row, so after loop insertion, each loop body
still only operates on the first row. For example, if the goal is
to scrape 100 movies, the program at this intermediate point
scrapes the first movie 100 times. The Generalizer adapts loop
bodies so that we can apply them to multiple rows of a rela-
tion. We use parameterization-by-value, a metaprogramming
technique for turning a term that operates on a concrete value
into a function that can be called on other values. Essentially,
(pbv term value)→ (lambda(x) term′), where term′ is term
with all uses of value replaced with uses of a fresh variable x.
We execute parameterization-by-value for DOM nodes, typed
strings, and URLs. For each Helena statement in a newly
inserted loop, we check whether the target node appears in the
loop’s associated relation. If yes, we identify the index i of the
target node n in the relation row. We then replace the Helena
statement’s slice of Ringer events E with (pbv E n)(row[i]),
where row is the variable name used to refer to the relation
row at each iteration. We repeat this process for typed strings,
for each type statement in a loop (checking whether the typed
string includes the text of any relation node), and for URLs,
for each load statement in the loop.

Range
Data Shape. The depth of a Rousillon program’s deepest
nested loop is the bound on the depth of the collected hier-
archy; our Generalizer can add any number of nested loops,
so Rousillon can collect arbitrarily deep hierarchies. Sibling
subtrees can have different depths – e.g., a movie can have no
actors and thus no child nodes. The number of child nodes of
any given node is unbounded and can vary – e.g., one movie
can have 10 actors while another has 20. Thus, the number
of dataset rows is unbounded. The number of columns per
row is bounded by the number of scrape statements in the
program; recall the Generalizer adds an output statement that
adds rows with one cell for each scrape statement – e.g., if the
user scraped a movie title and an actor name, each output row
includes a movie title and an actor name. To collect variable-
length data, users should add additional layers in the data
hierarchy rather than variable-length rows – e.g., if users want
a list of actors for each movie, they collect many [movie, actor]
rows rather than one variable-length [movie, actor1, actor2,...]
row per movie. The number of scrape statements bounds but
does not precisely determine the number of populated cells per
row; Rousillon leaves an empty cell for missing data – e.g., if
an actor appears in a cast list without an associated character
name, the role cell is left empty.

Node Addressing. “Node addressing” or “data description”
is the problem of identifying the node on which to dispatch an
action or from which to extract data. This is a long-standing
problem in the web PBD community and largely determines
how well a program handles page redesigns and other changes.
Rousillon uses Ringer for replay and thus uses Ringer’s node
addressing (see [4]). This means any webpage changes that
Ringer cannot handle, Rousillon also cannot handle.

Ambiguity. Rousillon uses a single demonstration as input
to the PBD process, so inputs can be ambiguous. For in-
stance, say a user scrapes a table in which some rows are
user-generated posts and some rows are ads. The user may

8

want to scrape all rows or only rows that have the same type
as the demonstrated row. A single-row demonstration is in-
sufficient to distinguish between these two cases. Thus it is
critical that users have the option to edit output programs; this
motivated our use of the high-level Helena language and a
blocks-based editor (see output in Fig. 3). Although this paper
focuses on the learnability of Rousillon’s PBD interaction,
studying the editability of its output programs is a natural
next step and critical to understanding whether Rousillon’s
ambiguity-embracing approach is practical for real users.

USER STUDY
To evaluate Rousillon, we conducted a within-subject user
study comparing Rousillon with Selenium, a traditional web
automation library. Based on Design Goal D3, we were more
interested in the learnability than the usability of the tool, so
we focused our study on the following research questions:

• RQ1: Can first-time users successfully learn and use Rousil-
lon to scrape distributed hierarchical data?

• RQ2: Will it be easier to learn to complete this task with
Rousillon or with a traditional web automation language?

We recruited 15 computer science graduate students (9 male,
6 female, ages 20 to 38) for a two-hour user study. All partici-
pants had been programmers for at least 4 years and had used
Python (one of Selenium’s host languages).

Procedure
We started each session with a description of the participant’s
assigned web scraping task. Each participant was assigned one
of two tasks: (i) Authors-Papers: Starting at Google Scholar,
iterate through a list of authors, and for each author a list
of papers. The authors list is a multi-page list; each author
links to a profile page that lists papers; more papers can be
loaded via a ‘More’ button that triggers AJAX requests. (ii)
Foundations-Tweets: Starting at a blog post that lists charitable
foundations, iterate through charitable foundations, and for
each foundation a list of tweets. The foundations list is a
single-page list; each foundation links to a Twitter profile that
lists tweets; more tweets can be loaded by scrolling the page
to trigger AJAX requests. Authors-Papers came from [8], and
Foundations-Tweets from a Public Policy collaborator.

Next, we asked each participant to complete the assigned task
with two tools: Rousillon and Selenium [49] (in particular,
the Python Selenium library). The tool order was randomized
to distribute the impact of transferable knowledge. For each
tool, we pointed the user to a webpage with documentation of
the tool but left the choice about whether and how to use that
documentation (or any other resources available on the web)
up to the participant; being primarily interested in learnability,
we wanted to observe the time between starting to learn a tool
independently and understanding it well enough to complete a
task with it, so we let participants control the learning experi-
ence. If a participant did not complete the task with a given
tool within an hour, we moved on to the next stage.

After using both tools, each participant answered a survey that
asked them to reflect on the tools’ learnability and usability.

Comparison Against Traditional Programming. By con-
ducting a within-subject user study, we obtain a fair evaluation
of the productivity benefits of PBD scraping versus traditional
scraping for realistic datasets. However, this design choice

0

1000

2000

3000

Ta
sk

 C
om

pl
et

io
n

Ti
m

e
(se

co
nd

s)

Rousillon (A-P Task) Selenium (A-P Task) Rousillon (F-T Task) Selenium (F-T Task)

Figure 6. Combined learning and task completion times for the Authors-
Papers and Foundations-Tweets tasks, using Rousillon and Selenium.
The cutoff was one hour; Selenium bars that extend to the one hour
mark indicate the participant was unable to complete the task with
Selenium. All participants succeeded with Rousillon in under 10 min-
utes. Only four of 15 succeeded with Selenium. Four Selenium bars are
marked with a black outline, indicating the participant had prior experi-
ence with Selenium. No participant had prior experience with Rousillon.

limits our participants to coders – novices with Rousillon, but
not novice programmers. We leave evaluation of Rousillon’s
usability by end users for future work. Note that a comparison
against state-of-the-art PBD web automation is not possible,
since no existing PBD tool can scrape the distributed hierar-
chical datasets we use in our tasks.

Results
User Performance
Fig. 6 shows completion times. Recall that since we are most
interested in learnability, which we operationalized as time
between starting to learn a tool and producing a first correct
program with it, we did not distinguish between time spent
learning and time spent writing programs. Thus, completion
times include both learning and program authoring time.

All participants completed their tasks with Rousillon, for a
completion rate of 100%. In contrast, only four out of 15
participants completed their tasks with Selenium, for a com-
pletion rate of 26.7%. Rousillon was also fast. All participants
learned and successfully used Rousillon in under 10 minutes,
four in less than 5 minutes. The median time was 6.67 minutes.

For the Authors-Papers task, the average completion time with
Rousillon was 5.7 minutes. With timed-out participants’ times
truncated at 60 minutes, the average completion time with
Selenium was 58.0 minutes. For the Foundations-Tweets task,
the average completion time with Rousillon was 7.3 minutes.
With timed-out participants’ times truncated at 60 minutes,
the average completion time with Selenium was 54.7 minutes.
Because our data is right-censored, with all Selenium times
above 60 minutes known only to be above 60 minutes, we
cannot provide a precise estimate of the learnability gains for
Rousillon versus Selenium. However, we can offer a lower
bound: the time to learn Selenium well enough to complete our
tasks is at least 8.5x higher than the time to learn Rousillon.

Although excluding right-censored data leaves only four data
points, Rousillon’s effect on performance is statistically sig-
nificant even for this small sample. We conducted a paired-
samples t-test for participants who completed the task with
both tools. There was a significant difference in the completion
times for the Selenium (M=2751.2, SD=600.2) and Rousillon
(M=405.8, SD=173.1) conditions; t(3)=8.534, p = 0.0034.

To evaluate timed out participants’ progress towards a working
Selenium scraper, we defined five checkpoints on the way

9

to a complete scraper. Completing all checkpoints means
completing the task. We found that six of 15 participants never
reached any of the checkpoints with Selenium. See Appendix
B for a table of which checkpoints each participant reached.

We also measured the number of debugging runs as an addi-
tional measure of work. On average, when participants used
Rousillon, they ran 0.2 debugging runs. (Of 15 participants, 13
only ran a correct program and thus had no debugging runs.)
On average, using Selenium, they ran 20.8 debugging runs.
Again, Selenium values are right-censored, since participants
who did not finish might need more debugging runs.

Although all participants were first-time Rousillon users, 4
of 15 participants had used Selenium in the past. Those with
prior Selenium experience accounted for 3 of the 4 participants
who completed their tasks with Selenium; one participant with
prior Selenium experience was unable to complete the task,
and only one participant with no prior Selenium experience
was able to complete a task with Selenium.

User Perceptions
We were interested in whether our participants, being pro-
grammers, would prefer a PBD or a traditional programming
approach. In the survey after the programming tasks, we asked
participants to rate how usable and learnable they found the
tools. Participants answered all questions with a seven-point
Likert scale, with 1 indicating the tool was very easy to use or
learn and 7 indicating the tool was very difficult to use or learn.
The average ratings for Rousillon and Selenium usability were
1.2 and 4.8, respectively. The average ratings for Rousillon
and Selenium learnability were 1.1 and 5.6, respectively.

We also asked what tools participants would want for future
scraping tasks of their own. Participants could list as many
tools as they liked, including tools they knew from elsewhere.
All but one participant (93.3%) indicated they would use
Rousillon; two (12.5%) indicated they would use Selenium.

User Study Discussion
What is challenging about traditional web automation?
We asked participants what was hardest about using Selenium.
Answers ranged from “Everything” to “Selecting elements on
a webpage designed by someone else; creating new windows
or tabs (supposedly possible...); expanding out paginated data
tables.” to “Mystifying browser behaviors (are we waiting
for a page to load? is an element visible? is the element
findable but not clickable????)”, “I worry that my Selenium
script is not very robust: I might have missed a lot of cases
or used ambiguous selectors to find elements.” The common
threads across responses were: (i) interacting with low-level
representations, (ii) understanding target pages’ structures and
behaviors, (iii) finding appropriate library methods, and (iv)
concerns about robustness to webpage structure changes.

What is challenging about PBD web automation?
In contrast, the most common answer to what was hardest
about using Rousillon was variations of “Nothing” or “NA”;
nine of 15 participants provided these answers. The primary
concerns were about control: “to what extent would people be
able to tweak things outside of the automatic framework?”, “I
think if I got used to using Selenium regularly, I would feel
limited by Rousillon.” This impression may be the effect of
our study design, which did not require participants to, for
instance, add if statements or other custom control flow.

What is good about traditional web automation?
Participants perceived Selenium as offering more low-level
control: “More manual work so maybe more flexibility (?)”,
“Very fine grained control if you have the time to figure it
all out.” Others suggested Selenium might be more useful
in the context of broader programming tasks: “The resulting
script could be added as part of a larger software pipeline” or
“you could run it headless and in parallel on multiple comput-
ers.” This suggests it is easier for programmers to imagine
programmatically manipulating a Selenium program than a
Rousillon program, although the suggested manipulations –
using a scraper in a larger pipeline or running in a distributed
setting – are possible with Rousillon and indeed already prac-
ticed by real users.

What is good about PBD web automation?
Participants appreciated that Rousillon handled the hierarchi-
cal structure for them (“[It] was very useful how it automati-
cally inferred the nesting that I wanted when going to multiple
pages so that I didn’t have to write multiple loops.”) and how it
shielded them from low-level node finding and relation finding
(“Locating the thing I care about is much simpler: just click
on it”). They also felt it anticipated their needs: “I didn’t know
anything about web scraping before starting and it fulfills a lot
of the functionality I didn’t even expect I would need,” “Super
easy to use and I trust that it automatically follows the links
down. It felt like magic and for quick data collection tasks
online I’d love to use it in the future.”

How do traditional and PBD web automation compare?
We also solicited open-ended responses comparing Rousillon
and Selenium, which produced a range of responses: “The task
was an order of magnitude faster in Rousillon,” “Rousillon
is much, much quicker to get started with,” “If I had to use
Selenium for web scraping, I would just not do it,” “Rousil-
lon’s way easier to use – point and click at what I wanted
and it ‘just worked’ like magic. Selenium is more fully fea-
tured, but...pretty clumsy (inserting random sleeps into the
script),” “Rousillon is a self balancing unicycle, Selenium is
a 6ft tall unicycle. One you can buy/download and [you’re]
basically up and going. The other you needs years of practice
just to get to the place where you feel comfortable going 10 ft.”
We were interested in what comparisons participants chose
to make. Ultimately, the comparisons sorted from highest to
lowest frequency were about: programming time, ease-of-use,
ease-of-learning, language power, and program robustness.

CONCLUSION AND FUTURE WORK
Rousillon’s novel interaction model and generalization algo-
rithms push PBD web scraping beyond the restrictions that
prevented past tools from collecting realistic datasets – in par-
ticular, distributed, hierarchical data. With a learning process
at least 8x faster than the learning process for traditional scrap-
ing, this strategy has the potential to put web automation tools
in the hands of a wider and more diverse audience. We feel
this motivates two key future directions: (i) Although Rousil-
lon is designed to combine PBD with a learnable, editable
programming language, this paper only evaluates PBD. Evalu-
ating Helena’s editability is a critical next stage. (ii) Rousillon
was designed with social scientists – and end users generally
– in mind. Because this paper compares PBD to traditional
programming, our evaluation focused on a population that can
use traditional languages. We see testing with end users as a
crucial next step on the path to democratizing web data access.

10

REFERENCES
1. a9t9. 2018. Web Browser Automation with KantuX,

Desktop Automation, OCR - Fresh 2017 Robotic Process
Automation (RPA). (March 2018). https://a9t9.com/

2. Brad Adelberg. 1998. NoDoSE - A tool for
Semi-Automatically Extracting Structured and
Semistructured Data from Text Documents. In SIGMOD
Record.

3. Nikolaos Askitas and Klaus F. Zimmermann. 2015. The
internet as a data source for advancement in social
sciences. International Journal of Manpower 36, 1
(2015), 2–12. DOI:
http://dx.doi.org/10.1108/IJM-02-2015-0029

4. Shaon Barman, Sarah Chasins, Rastislav Bodik, and
Sumit Gulwani. 2016. Ringer: Web Automation by
Demonstration. In Proceedings of the 2016 ACM
SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA 2016). ACM, New York, NY, USA, 748–764.
DOI:http://dx.doi.org/10.1145/2983990.2984020

5. Chia-Hui Chang, Mohammed Kayed, Moheb Ramzy
Girgis, and Khaled F. Shaalan. 2006. A Survey of Web
Information Extraction Systems. IEEE Trans. on Knowl.
and Data Eng. 18, 10 (Oct. 2006), 1411–1428. DOI:
http://dx.doi.org/10.1109/TKDE.2006.152

6. Kerry Shih-Ping Chang and Brad A. Myers. 2017. Gneiss.
J. Vis. Lang. Comput. 39, C (April 2017), 41–50. DOI:
http://dx.doi.org/10.1016/j.jvlc.2016.07.004

7. Sarah Chasins. 2017. Helena: Web Automation for End
Users. http://helena-lang.org/. (Oct. 2017).

8. Sarah Chasins, Shaon Barman, Rastislav Bodik, and
Sumit Gulwani. 2015. Browser Record and Replay As a
Building Block for End-User Web Automation Tools. In
Proceedings of the 24th International Conference on
World Wide Web Companion (WWW ’15 Companion).
179–182. DOI:
http://dx.doi.org/10.1145/2740908.2742849

9. Sarah Chasins and Rastislav Bodik. 2017. Skip Blocks:
Reusing Execution History to Accelerate Web Scripts.
Proc. ACM Program. Lang. 1, OOPSLA, Article 51 (Oct.
2017), 28 pages. DOI:http://dx.doi.org/10.1145/3133875

10. Allen Cypher. 1991. EAGER: Programming Repetitive
Tasks by Example. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI ’91). ACM, New York, NY, USA, 33–39. DOI:
http://dx.doi.org/10.1145/108844.108850

11. Sergio Flesca, Giuseppe Manco, Elio Masciari, Eugenio
Rende, and Andrea Tagarelli. 2004. Web Wrapper
Induction: A Brief Survey. AI Commun. 17, 2 (April
2004), 57–61.
http://dl.acm.org/citation.cfm?id=1218702.1218707

12. Tim Furche, Jinsong Guo, Sebastian Maneth, and
Christian Schallhart. 2016. Robust and Noise Resistant
Wrapper Induction. In Proceedings of the 2016
International Conference on Management of Data
(SIGMOD ’16). ACM, New York, NY, USA, 773–784.
DOI:http://dx.doi.org/10.1145/2882903.2915214

13. Greasemonkey. 2015. Greasemonkey :: Add-ons for
Firefox. https://addons.mozilla.org/en-
us/firefox/addon/greasemonkey/. (Nov.
2015).

14. Sumit Gulwani. 2011. Automating String Processing in
Spreadsheets using Input-Output Examples. (January
2011).

15. HaskellWiki. 2017. HXT - HaskellWiki. https://wiki.
haskell.org/HXT#Selecting_text_from_an_HTML_document.
(Nov. 2017).

16. hpricot. 2015. hpricot/hpricot.
https://github.com/hpricot/hpricot. (Aug. 2015).

17. Chun-Nan Hsu and Ming-Tzung Dung. 1998. Generating
finite-state transducers for semi-structured data extraction
from the Web. Information Systems 23, 8 (1998), 521 –
538. DOI:
http://dx.doi.org/10.1016/S0306-4379(98)00027-1
Semistructured Data.

18. Darris Hupp and Robert C. Miller. 2007. Smart
bookmarks: automatic retroactive macro recording on the
web. In Proceedings of the 20th annual ACM symposium
on User interface software and technology (UIST ’07).
ACM, New York, NY, USA, 81–90. DOI:
http://dx.doi.org/10.1145/1294211.1294226

19. David F. Huynh, Robert C. Miller, and David R. Karger.
2006. Enabling web browsers to augment web sites’
filtering and sorting functionalities. In UIST ’06:
Proceedings of the 19th annual ACM symposium on User
interface software and technology. ACM Press, New
York, NY, USA, 125–134. DOI:
http://dx.doi.org/10.1145/1166253.1166274

20. Import.io. 2016. Import.io | Web Data Platform & Free
Web Scraping Tool. (March 2016).
https://www.import.io/

21. iOpus. 2013. Browser Scripting, Data Extraction and
Web Testing by iMacros. http://www.iopus.com/imacros/.
(July 2013).

22. KimonoLabs. 2016. Kimono: Turn websites into
structured APIs from your browser in seconds. (March
2016). https://www.kimonolabs.com

23. Andhy Koesnandar, Sebastian Elbaum, Gregg Rothermel,
Lorin Hochstein, Christopher Scaffidi, and Kathryn T.
Stolee. 2008. Using Assertions to Help End-user
Programmers Create Dependable Web Macros. In
Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of Software Engineering
(SIGSOFT ’08/FSE-16). ACM, New York, NY, USA,
124–134. DOI:
http://dx.doi.org/10.1145/1453101.1453119

24. Nicholas Kushmerick. 1997. Wrapper Induction for
Information Extraction. Ph.D. Dissertation. AAI9819266.

25. Nicholas Kushmerick. 2000. Wrapper induction:
Efficiency and expressiveness. Artificial Intelligence 118,
1 (2000), 15 – 68. DOI:
http://dx.doi.org/10.1016/S0004-3702(99)00100-9

11

https://a9t9.com/
http://dx.doi.org/10.1108/IJM-02-2015-0029
http://dx.doi.org/10.1145/2983990.2984020
http://dx.doi.org/10.1109/TKDE.2006.152
http://dx.doi.org/10.1016/j.jvlc.2016.07.004
http://helena-lang.org/
http://dx.doi.org/10.1145/2740908.2742849
http://dx.doi.org/10.1145/3133875
http://dx.doi.org/10.1145/108844.108850
http://dl.acm.org/citation.cfm?id=1218702.1218707
http://dx.doi.org/10.1145/2882903.2915214
https://wiki.haskell.org/HXT#Selecting_text_from_an_HTML_document
https://wiki.haskell.org/HXT#Selecting_text_from_an_HTML_document
https://github.com/hpricot/hpricot
http://dx.doi.org/10.1016/S0306-4379(98)00027-1
http://dx.doi.org/10.1145/1294211.1294226
http://dx.doi.org/10.1145/1166253.1166274
https://www.import.io/
http://www.iopus.com/imacros/
https://www.kimonolabs.com
http://dx.doi.org/10.1145/1453101.1453119
http://dx.doi.org/10.1016/S0004-3702(99)00100-9

26. Nicholas Kushmerick, Daniel S. Weld, and Robert
Doorenbos. 1997. Wrapper Induction for Information
Extraction. In Proc. IJCAI-97.
http://citeseer.nj.nec.com/kushmerick97wrapper.html

27. Tessa Lau, Steven A. Wolfman, Pedro Domingos, and
Daniel S. Weld. 2003. Programming by Demonstration
Using Version Space Algebra. Mach. Learn. 53, 1-2 (Oct.
2003), 111–156. DOI:
http://dx.doi.org/10.1023/A:1025671410623

28. Tessa A. Lau, Pedro Domingos, and Daniel S. Weld.
2000. Version Space Algebra and its Application to
Programming by Demonstration. In ICML ’00:
Proceedings of the Seventeenth International Conference
on Machine Learning. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 527–534.
http://portal.acm.org/citation.cfm?id=657973

29. Vu Le and Sumit Gulwani. 2014. FlashExtract: A
Framework for Data Extraction by Examples. In
Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI ’14). ACM, New York, NY, USA, 542–553. DOI:
http://dx.doi.org/10.1145/2594291.2594333

30. Gilly Leshed, Eben M. Haber, Tara Matthews, and Tessa
Lau. 2008. CoScripter: automating & sharing how-to
knowledge in the enterprise. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’08). ACM, New York, NY, USA,
1719–1728. DOI:
http://dx.doi.org/10.1145/1357054.1357323

31. Ian Li, Jeffrey Nichols, Tessa Lau, Clemens Drews, and
Allen Cypher. 2010. Here’s What I Did: Sharing and
Reusing Web Activity with ActionShot. In Proceedings of
the SIGCHI Conference on Human Factors in Computing
Systems (CHI ’10). ACM, New York, NY, USA, 723–732.
DOI:http://dx.doi.org/10.1145/1753326.1753432

32. James Lin, Jeffrey Wong, Jeffrey Nichols, Allen Cypher,
and Tessa A. Lau. 2009. End-user programming of
mashups with Vegemite. In Proceedings of the 14th
international conference on Intelligent user interfaces
(IUI ’09). ACM, New York, NY, USA, 97–106. DOI:
http://dx.doi.org/10.1145/1502650.1502667

33. Jalal Mahmud and Tessa Lau. 2010. Lowering the
barriers to website testing with CoTester. In Proceedings
of the 15th international conference on Intelligent user
interfaces (IUI ’10). ACM, New York, NY, USA,
169–178. DOI:
http://dx.doi.org/10.1145/1719970.1719994

34. Noortje Marres and Esther Weltevrede. 2013. Scraping
the Social? Journal of Cultural Economy 6, 3 (2013),
313–335. DOI:
http://dx.doi.org/10.1080/17530350.2013.772070

35. Mozenda. 2018. Web Scraping Solutions for Every Need.
(March 2018). https://www.mozenda.com/?utm_source=
googleadwords&utm_medium=cpc&utm_term=Mozenda&gclid=
EAIaIQobChMIuM71jfGc2gIVC7nACh2mOwz8EAAYASAAEgLSzPD_
BwE

36. Ion Muslea, Steve Minton, and Craig Knoblock. 1999a. A
Hierarchical Approach to Wrapper Induction. In
Proceedings of the Third Annual Conference on

Autonomous Agents (AGENTS ’99). ACM, New York,
NY, USA, 190–197. DOI:
http://dx.doi.org/10.1145/301136.301191

37. Ion Muslea, Steve Minton, and Craig Knoblock. 1999b. A
Hierarchical Approach to Wrapper Induction. In
Proceedings of the Third Annual Conference on
Autonomous Agents (AGENTS ’99). ACM, New York,
NY, USA, 190–197. DOI:
http://dx.doi.org/10.1145/301136.301191

38. Nokogiri. 2016. Tutorials - Nokogiri.
http://www.nokogiri.org/. (Nov. 2016).

39. Donald A. Norman. 2002. The Design of Everyday
Things. Basic Books, Inc., New York, NY, USA.

40. Octoparse. 2018. Web Scraping Tool & Free Web
Crawlers for Data Extraction | Octoparse. (March 2018).
https://www.octoparse.com/

41. SIMILE Semantic Interoperability of Metadata and
Information in unLike Environments. 2016. Solvent.
(March 2016). http://simile.mit.edu/solvent/

42. Adi Omari, Sharon Shoham, and Eran Yahav. 2017.
Synthesis of Forgiving Data Extractors. In Proceedings of
the Tenth ACM International Conference on Web Search
and Data Mining (WSDM ’17). ACM, New York, NY,
USA, 385–394. DOI:
http://dx.doi.org/10.1145/3018661.3018740

43. ParseHub. 2018. Free web scraping - Download the most
powerful web scraper | ParseHub. (March 2018).
https://www.parsehub.com/

44. Platypus. 2013. Platypus. http://platypus.mozdev.org/.
(Nov. 2013).

45. Mitchel Resnick, John Maloney, Andrés
Monroy-Hernández, Natalie Rusk, Evelyn Eastmond,
Karen Brennan, Amon Millner, Eric Rosenbaum, Jay
Silver, Brian Silverman, and Yasmin Kafai. 2009. Scratch:
Programming for All. Commun. ACM 52, 11 (Nov. 2009),
60–67. DOI:http://dx.doi.org/10.1145/1592761.1592779

46. Leonard Richardson. 2016. Beautiful Soup: We called
him Tortoise because he taught us.
http://www.crummy.com/software/BeautifulSoup/. (March
2016).

47. Scrapinghub. 2018. Visual scraping with Portia. (March
2018). https://scrapinghub.com/portia

48. Scrapy. 2013. Scrapy. http://scrapy.org/. (July 2013).

49. Selenium. 2013. Selenium-Web Browser Automation.
http://seleniumhq.org/. (July 2013).

50. Selenium. 2016. Selenium IDE Plugins.
http://www.seleniumhq.org/projects/ide/. (March 2016).
http://www.seleniumhq.org/projects/ide/

51. Armando Solar-Lezama. 2008. Program Synthesis by
Sketching. Ph.D. Dissertation. Berkeley, CA, USA.
Advisor(s) Bodik, Rastislav. AAI3353225.

52. Howard T Welser, Marc Smith, Danyel Fisher, and Eric
Gleave. 2008. Distilling digital traces: Computational
social science approaches to studying the internet.
Handbook of online research methods (2008), 116–140.

12

http://citeseer.nj.nec.com/kushmerick97wrapper.html
http://dx.doi.org/10.1023/A:1025671410623
http://portal.acm.org/citation.cfm?id=657973
http://dx.doi.org/10.1145/2594291.2594333
http://dx.doi.org/10.1145/1357054.1357323
http://dx.doi.org/10.1145/1753326.1753432
http://dx.doi.org/10.1145/1502650.1502667
http://dx.doi.org/10.1145/1719970.1719994
http://dx.doi.org/10.1080/17530350.2013.772070
https://www.mozenda.com/?utm_source=googleadwords&utm_medium=cpc&utm_term=Mozenda&gclid=EAIaIQobChMIuM71jfGc2gIVC7nACh2mOwz8EAAYASAAEgLSzPD_BwE
https://www.mozenda.com/?utm_source=googleadwords&utm_medium=cpc&utm_term=Mozenda&gclid=EAIaIQobChMIuM71jfGc2gIVC7nACh2mOwz8EAAYASAAEgLSzPD_BwE
https://www.mozenda.com/?utm_source=googleadwords&utm_medium=cpc&utm_term=Mozenda&gclid=EAIaIQobChMIuM71jfGc2gIVC7nACh2mOwz8EAAYASAAEgLSzPD_BwE
https://www.mozenda.com/?utm_source=googleadwords&utm_medium=cpc&utm_term=Mozenda&gclid=EAIaIQobChMIuM71jfGc2gIVC7nACh2mOwz8EAAYASAAEgLSzPD_BwE
http://dx.doi.org/10.1145/301136.301191
http://dx.doi.org/10.1145/301136.301191
http://www.nokogiri.org/
https://www.octoparse.com/
http://simile.mit.edu/solvent/
http://dx.doi.org/10.1145/3018661.3018740
https://www.parsehub.com/
http://platypus.mozdev.org/
http://dx.doi.org/10.1145/1592761.1592779
http://www.crummy.com/software/BeautifulSoup/
https://scrapinghub.com/portia
http://scrapy.org/
http://seleniumhq.org/
http://www.seleniumhq.org/projects/ide/
http://www.seleniumhq.org/projects/ide/

53. Jeffrey Wong and Jason I. Hong. Making Mashups with
Marmite: Towards End-user Programming for the Web.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Syst24.1240842. ACM, New York,
NY, USA. DOI:
http://dx.doi.org/10.1145/1240624.1240842

54. Shuyi Zheng, Ruihua Song, Ji-Rong Wen, and C. Lee
Giles. 2009. Efficient Record-level Wrapper Induction. In
Proceedings of the 18th ACM Conference on Information
and Knowledge Management (CIKM ’09). ACM, New
York, NY, USA, 47–56. DOI:
http://dx.doi.org/10.1145/1645953.1645962

APPENDIX

RELATION SELECTOR EXAMPLE
Here we expand on the sample Relation Selector execution
described in the Algorithms section. Say the user interacts
with a webpage with the partial DOM tree depicted in Fig. 7
and scrapes the nodes highlighted in red: page title, movie
1 title, and movie 1 rating.

The Relation Selector starts by passing all three interacted
nodes to the relation extractor, which tries to find a relation
with all three nodes in the first row. The deepest common
ancestor of all three is page body. The relation extractor
identifies a structure fingerprint for page body; the finger-
print is a representation of the Fig. 7 edges highlighted in
orange and purple – that is, the paths to all three interacted
nodes. Next it looks for a sibling of page body that has nodes
at all of those positions. Since page header does not have
nodes at those positions, the relation extractor fails to find an
appropriate sibling node (representing a predicted second row)
for this set of input nodes. The relation extractor returns null
for this input.

Next the Relation Selector tries subsets of the three interacted
nodes, starting with subsets of size two. Eventually it tries {
movie 1 title, movie 1 rating }. For this subset, the
deepest common ancestor is movie 1; its structure fingerprint
includes the paths highlighted in purple. The relation extractor
seeks a sibling of movie 1 that has nodes at those paths and
finds that movie 2 has nodes movie 2 title and movie 2
rating at those positions. Since this subset produces a first
row that has an appropriate sibling for making a second row,
the relation extractor passes the first and second rows to a
traditional relation extraction algorithm ([53, 29, 22, 20]), and
the Relation Selector returns the result.

For simplicity, we do not describe cases in which Rousillon
extracts multiple relations from one page, but this is necessary
in practice.

TASK COMPLETION LEVELS WITH SELENIUM
Task 1 full 1st pg 2nd pg 1st pg 2nd pg

row outer loop outer loop inner loop inner loop
A-P
A-P
A-P
A-P X
A-P X X X
A-P X X X
A-P X X X X X
F-T -
F-T -
F-T -
F-T X -
F-T X -
F-T X X - X X
F-T X X - X X
F-T X X - X X

Table 1. Because we wanted to understand partial completions of
tasks with Selenium, we defined subtasks of the Authors-Papers and
Foundations-Tweets tasks. We imposed higher standards for Rousillon
programs, but for the Selenium component of the study, we considered
a task complete once the participant wrote a script that completed all
five of these subtasks. The subtasks are: (i) producing a row with all
requisite cells, (ii) iterating through the first page of the relation associ-
ated with the outer loop, (iii) iterating through at least the first two pages
of the relation associated with the outer loop, (iv) iterating through the
first page of the relation associated with the inner loop, and (v) iterating
through at least the first two pages of the relation associated with the in-
ner loop. Note that the Foundations-Tweets task has only four subtasks
because the list of foundations appears entirely in a single webpage; we
show ‘-’ in the ‘2nd pg outer loop’ column to indicate there is no sec-
ond page of data for this loop. Overall, less than half of the participants
wrote a script that could collect one complete row of the target dataset
within the one-hour time limit.

ACKNOWLEDGMENTS
We are grateful to the anonymous reviewers and our shepherd,
Philip Guo, for their feedback. This work is supported in
part by NSF Grants CCF–1139138, CCF–1337415, NSF ACI–
1535191, and NSF 16-606, a Grant from U.S. Department of
Energy, Office of Science, Office of Basic Energy Sciences En-
ergy Frontier Research Centers program under Award Number
FOA–0000619, the CONIX Research Center, one of six cen-
ters in JUMP, a Semiconductor Research Corporation (SRC)
program sponsored by DARPA, grants from DARPA FA8750–
14–C–0011 and DARPA FA8750–16–2–0032, by the Intel and
NSF joint research center for Computer Assisted Program-
ming for Heterogeneous Architectures (CAPA) as well as gifts
from Google, Intel, Mozilla, Nokia, and Qualcomm.

Figure 7. A sample DOM tree. If the user interacts with the nodes highlighted in red, the Relation Selector will produce a relation with one column for
movie titles and one column for movie ratings. The relation extractor will find that movie 1’s structure fingerprint (the paths highlighted in purple)
matches the structure fingerprint of movie 2 (the paths highlighted in red).

13

http://dx.doi.org/10.1145/1240624.1240842
http://dx.doi.org/10.1145/1645953.1645962

	Introduction
	Distributed Data
	Hierarchical Data
	Rousillon
	Contributions

	Related Work
	PBD Single-Page Data Extraction
	PBD Data Extraction + Data Access
	Web Automation Languages
	Partial PBD
	Rousillon Building Blocks

	Formative Interviews and Design Goals
	Rousillon Interaction Model
	Interface

	Algorithms
	Reverse Compiler
	Relation Selector
	Generalizer
	Range

	User Study
	Procedure
	Results
	User Performance
	User Perceptions

	User Study Discussion

	Conclusion and Future Work
	References
	Relation Selector Example
	Task Completion Levels with Selenium
	Acknowledgments

