
Browser Record and Replay as a Building Block for

End-User Web Automation Tools

Sarah Chasins

1
Shaon Barman

1
Sumit Gulwani

2
Rastislav Bodik

1

1
University of California, Berkeley

2
Microsoft Research

{schasins,sbarman,bodik}@cs.berkeley.edu sumitg@microsoft.com

ABSTRACT
To build a programming by demonstration (PBD) web scrap-
ing tool for end users, one needs two central components: a
list finder, and a record and replay tool. A list finder ex-
tracts logical tables from a webpage. A record and replay
(R+R) system records a user’s interactions with a webpage,
and replays them programmatically. The research commu-
nity has invested substantial work in list finding — variously
called wrapper induction, structured data extraction, and
template detection. In contrast, researchers largely consid-
ered the browser R+R problem solved until recently, when
webpage complexity and interactivity began to rise. We ar-
gue that the increase in interactivity necessitates the use of
new, more robust R+R approaches, which will facilitate the
PBD web tools of the future. Because robust R+R is di�-
cult to build and understand, we argue that tool developers
need an R+R layer that they can treat as a black box.

We have designed an easy-to-use API that allows pro-
grammers to use and even customize R+R, without having
to understand R+R internals. We have instantiated our
API in Ringer, our robust R+R tool. We use the API
to implement WebCombine, a PBD scraping tool. A We-
bCombine user demonstrates how to collect the first row
of a relational dataset, and the tool collects all remaining
rows. WebCombine uses the Ringer API to handle naviga-
tion between pages, enabling users to scrape from modern,
interaction-heavy pages. We demonstrate WebCombine by
collecting a 3,787,146 row dataset from Google Scholar that
allows us to explore the relationship between researchers’
years of experience and their papers’ citation counts.

Categories and Subject Descriptors: H.5.2 [In-
formation Interfaces and Presentation]:User Interfaces

Keywords: Record and Replay, End-User Programming,
Programming by Demonstration, Automation

1. INTRODUCTION
Although the amount of data available on the Web is con-

stantly increasing, much of this data is presented in web-

Copyright is held by the International World Wide Web Conference Com-

mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the

author’s site if the Material is used in electronic media.

WWW 2015 Companion, May 18–22, 2015, Florence, Italy.

ACM 978-1-4503-3473-0/15/05.

http://dx.doi.org/10.1145/2740908.2742849 .

pages that make it di�cult for end users to explore it freely.
This has motivated the creation of web scraping tools de-
signed specifically for end users.

The earliest work on PBD scraping assumed a simple
workflow. First the user finds a webpage that implicitly
contains a database table. He uses the PBD tool to select
a small number of cells from the logical table, and the PBD
tool extracts the full table. This single-page problem drove
the early work on wrapper induction [2] and structured data
extraction [1]. Eventually tool builders recognized the need
to scrape logical tables partitioned across multiple webpages,
and added support for ‘Next’ buttons; however, since they
essentially concatenated all pages together to form a single
larger page, these tools used the same core algorithms.

These early techniques rest on the assumption that all
cells of a given row appear on a single page. For a user who
wants to scrape his friends’ phone numbers from Facebook,
there is no such single page. Instead, from a list of friends,
he must click on each friend’s name to retrieve the friend’s
profile, then on the “About” link, and only then scrape the
phone number from the “About” page. Single-page wrapper
induction cannot scrape this data, because the cells in the
target table are scattered across many pages.

Later, end-user web programming researchers recognized
the need for an R+R layer. For instance, the mashup tool
Vegemite [4] was built on top of the CoScripter [3] R+R
system. Vegemite overcame the single-page restriction. It
allowed users to repeat a recorded interaction for each row
in a spreadsheet. Since recordings can access an arbitrary
sequence of pages, users could scrape the cells of one row
from multiple pages.

Unfortunately, the web has changed, and the replay prob-
lem has changed along with it. CoScripter — like most web
R+R tools — was developed when webpages were much less
interactive. Modern sites use AJAX and custom JavaScript
event handlers to dynamically load information in response
to user actions. While the increasing use of these technolo-
gies has made webpages more responsive and interactive,
they present new challenges for standard R+R tools.

Let us consider one such challenge, an interaction that
standard R+R tools cannot replay. Say a user wants to
scrape the Amazon page for a given product, including the
price of all options (e.g. colors). The product page shows
only one price at a time, and the user must interact with the
page to control which option’s price is shown. To display a
given option’s price, the user clicks on the corresponding op-
tion button and waits as the page sends an AJAX request
to retrieve the new price. The webpage remains grayed out
during this time, to signal that the page is loading. The user
recognizes this visual cue, and waits until the page is up-

179



(a) Author list page

+

(b) One author’s paper list page

!

Herbert Simon Administrative ... 20760 1957
Herbert Simon Organizations 20101 1975
Herbert Simon Organizations 19945 1958
Herbert Simon The Sciences ... 17865 1981
... ... ... ...
William H. Press Numerical ... 116562 1992
William H. Press Numerical ... 113482 1992
William H. Press Numerical ... 113289 1986
William H. Press Numerical ... 112755 2007
... ... ... ...
vapnik Statistical ... 55113 1998
vapnik The Nature ... 54856 1995
vapnik Support-vector ... 16111 1995
vapnik A training ... 6254 1992
... ... ... ...

(c) WebCombine output

Figure 1: To use WebCombine to scrape data from Google Scholar, the user first identifies the list of authors by clicking on
author names. Next the user demonstrates how to access the citations page for one author (by clicking on the link). On
the resultant page, the user identifies the list of papers. WebCombine uses these demonstrations to automatically scrape the
website, producing a single table of papers with each paper’s author, title, citation count, and year.

dated before scraping the price, even though a price node is
already present. After recording this interaction, CoScripter
would issue the same events — a click on the option button
and a scrape action on the price node. However, because
standard R+R tools like CoScripter have no mechanism for
recognizing that they must wait for new data to load, it
scrapes the price before the page is updated, and thus col-
lects the previous price. This page does contain a logical
table, the list of prices, but standard R+R cannot replay
the interactions required to access it.

Although the R+R problem appeared solved when earlier
replay tools were introduced, today’s increasingly interac-
tive pages make traditional approaches fragile. To handle
this evolution, we developed Ringer, a browser R+R tool
with a new approach. Although we do not cover its imple-
mentation in this paper, at its core Ringer infers when to
issue events by observing requests sent to the web server. In
the Amazon example, Ringer learns that a particular AJAX
response must be processed before the price can be correctly
scraped. This inference step is critical to robust record and
replay of interactive webpages.

Although R+R is an important building block for new
PBD applications, the increase in webpage interactivity
makes it unreasonable to expect programmers to build a
custom R+R layer for each new tool. Even customizing ex-
isting R+R tools such as CoScripter is hardly less daunting.
To address this, we designed a powerful R+R API that al-
lows programmers to customize Ringer without having to
understand its implementation. The API allows program-
mers to easily record interactions, treat the recordings as
programs, and ultimately parameterize them. We have used
this API to build WebCombine, a PBD web scraping tool.

We contribute:
• a clean interface between a robust R+R tool and applica-

tions that use it as a building block,
• a PBD scraping tool built with our API, and
• a dataset collected with our tool from Google Scholar.

2. USER INTERACTION
To motivate the WebCombine architecture, we first de-

scribe how a user interacts with WebCombine.
Assume a user wants to scrape Google Scholar to collect

the data in Figure 1(c). To do this, he must 1) scrape a list
of authors, 2) for each author, follow a link to the author’s
page, and 3) from the author’s page, scrape a list of papers.

To scrape this data usingWebCombine’s interaction model,
a user alternates between demonstrating lists (e.g. identify-

ing a list of authors) and recording interactions (e.g. clicking
on the link to an author’s page). WebCombine interprets a
list demonstration as the introduction of a for loop, and a
recorded interaction as a procedure in the loop body. Each
new loop is nested in the previous loop.

We now walk through the details of the Google Scholar
example. The user starts his WebCombine script by demon-
strating a list. Figure 1(a) displays a screenshot of the
browser window. WebCombine’s control panel is not shown.
In Figure 1(a), the user has used the control panel to enter
list finding mode, then clicked on the name “Herbert Si-
mon” in the webpage. WebCombine highlights the nodes in
its current hypothesized list. In this case, WebCombine has
correctly hypothesized that the user wants to scrape all au-
thors. If the list was not yet correct, the user would need
to click on more sample elements. To demonstrate how to
reach the next page of authors, the user will click the “Next
Button” option on the control panel, then click on the arrow
button in the upper right corner of the webpage. With this,
the user will have completely specified the list of authors.

The user’s next step is to enter recording mode. He records
himself clicking on “Herbert Simon” in the browser window.
This loads the author’s publications page, pictured in 1(b).
Once that page has opened, the user may end the recording.

In Figure 1(b), the user has started demonstrating a new
list. He has clicked on the title, year, and citations of the
first paper. The list finder has correctly hypothesized that
the user wishes to collect the list of Herbert Simon’s papers,
including all clicked attributes.

Once the user finishes the process above, WebCombine
generates a scraping script. Running WebCombine produces
an output table, the paper citation data in Figure 1(c).

From a sequence of alternating lists and recordings —
list_1, recording_1, list_2, ... — WebCombine creates
a program of the following form:

for item_1 in list_1:
table1.insert(item_1)
parameterize recording_1 using item_1
for item_2 in list_2:

table_2.insert(item_2, foreign_key=item_1)
parameterize recording_2 using item_2
...

For each for loop in the scraping program, WebCombine
maintains a relational table. For this example, WebCombine
would have one author table, with a single column of author
names, and one paper table, with columns for title, year, and
citations. Each record generated by an inner loop is linked
by a foreign key to the most recent record in the immediate
surrounding loop. Thus, each paper record scraped from

180



Function Return Type Description

startRec() - starts a new recording

stopRec() Program ends current recording

replay(p:Program) Program replays the program p

Table 1: The Ringer API.

Herbert Simon’s page is linked to the Herbert Simon author
record. Because such databases may be unfamiliar to end
users, we present the data to the user as a single table by
doing a natural join over all tables, as shown in Figure 1(c).

Note that the user only demonstrated the process on the
first element of the outer loop, Herbert Simon. If the user
had chosen to record an interaction to repeat on each paper,
he would also demonstrate on only the first paper. Essen-
tially, the user records how he collects the first row of data,
leaving the tool to automatically collect the rest.

3. SYSTEM ARCHITECTURE
A WebCombine user builds a script by demonstrating lists

(introducing loops) and demonstrating interactions (adding
to loop bodies). These two interaction types are handled
by the list finder and the R+R system respectively. In this
section, we describe their functionality.

3.1 List Finder
To introduce a loop into a WebCombine program, a user

must identify a list. Internally, the list finder uses a small
language of node features — e.g. width, x coordinate, pre-
ceding text — to select list elements. WebCombine’s task
during list finding is to synthesize a selector in this language.

Although the synthesis algorithm is out of scope of this
paper, the inputs to this algorithm shape the user interac-
tion model. The inputs are a set of positive examples (DOM
nodes that should be included in the list) and one of negative
examples (nodes that should be excluded). During list find-
ing, clicking on a node in the browser window adds the node
to one of the two sets. After each click, the list finder gener-
ates an expression that selects all positive examples and no
negative ones, then highlights all nodes selected by this ex-
pression. A click on a highlighted node adds the node to the
negative examples. A click on an unhighlighted node adds
it to the positive examples. Essentially, the user adjusts the
list finder’s hypothesis by providing counterexamples. When
she is satisfied with the highlighted list, the process is done.

Users may collect lists that are partitioned across pages by
identifying ‘Next’ or ‘More’ buttons, as described in Section
2. Users may also find multi-column lists, as in Figure 1(b).

3.2 R+R
To teach WebCombine to repeat an action for each ele-

ment in a list, a user simply demonstrates the desired action.
WebCombine must be able to 1) record the interaction, 2)
replay it, and 3) replay variations on it. We have developed
Ringer [5], a web R+R tool that o↵ers this functionality.

Ringer is a record and replay system for the browser, im-
plemented in JavaScript. It can record a user’s interactions
with webpages, and it can turn a recording into a script that
replays the same interactions.

WebCombine treats Ringer as a black box. To make this
approach possible, we had to design an R+R API that o↵ers
su�cient control to top-level applications like WebCombine.

3.2.1 The Basic R+R Interface

The basic Ringer API in Table 1 o↵ers simple functions
for starting and stopping a recording. The stopRec function

returns a Program object, which top-level applications like
WebCombine can store and modify as desired. They can
replay them at any time with the replay function.

3.2.2 Parameterizing R+R Programs

In Table 2 we provide the API for parameterizing Ringer
programs. The output of a Ringer recording is a straight-
line program, but typically an application should not replay
the same straight-line program over and over. In the case of
WebCombine, we do not want to click the first element of
a list 30 times. We want to click the first, then the second,
and so on. Implementing this with our API is simple:

startRec()
p = stopRec()
p.parameterizeXPath("list_item", XPath(list[0]))
for item in list:
p.useXpath("list_item", XPath(item))
replay(p)

We identified three important parts of Ringer programs that
might need to be turned into parameters. First, XPaths can
be used to identify DOM nodes, so replacing XPaths allows a
top-level application to direct Ringer to interact with di↵er-
ent nodes than the ones in the user’s initial demonstration.
For instance, WebCombine can call a parameterized pro-
gram with a sequence of di↵erent XPaths such that it clicks
on each author in our list of authors, rather than clicking
on Herbert Simon over and over. Second, user-typed strings
may need replacing. For instance, if a user records an inter-
action in which he types the string “Herbert Simon email”
into a search engine, WebCombine does not use that same
string for each author in the list. Rather, it searches in turn
for each author’s name concatenated with “ email”. Finally,
Ringer must know in which tab and in which frame of a tab
to replay each event. If WebCombine is opening the author
pages for all authors in a list, each in a fresh tab, it must be
able to direct Ringer to the correct tab for each new author.

The Table 2 API abstracts away the details of altering
event objects, adding and removing event objects, and man-
aging Ringer’s frame mapping. From the programmer’s per-
spective, she merely replaces the values from the original
demonstration with parameters to create functions, then
calls the functions with arguments.

3.2.3 Customizing R+R Itself

Some applications need even more control over Ringer op-
eration. For instance, say a user wants to scrape not only list
elements, but also some of the webpage text he sees during a
recording. This might arise in the author example if the user
wanted to scrape the author’s homepage, which appears in
neither the author list nor the paper list. To address this
possibility, WebCombine has a scraping mode that can be
turned on and o↵ during recording. However, Ringer has
no built-in scraping mode. Without a customizable R+R
layer, adding this functionality might mean modifying the
internals of the R+R tool, a di�cult and daunting task.

Our interface eliminates the need for such R+R hacking by
allowing applications to create custom modes. The applica-
tion can turn a mode on or o↵ at any point during recording,
and Ringer ensures that it is toggled at the corresponding
points during replay. Applications change Ringer’s behavior
during a mode by associating a custom handler. While a
given mode is turned on, Ringer runs the associated handler
on each new event that Ringer records or replays, passing
the event data object as an argument. We can implement
WebCombine’s scraping mode using a handler that sends
the text content of clicked nodes to WebCombine. The use

181



Function Description

Program.parameterizeXPath(name:ID, origXPath:XPath) replace origXPath with the parameter name

Program.useXPath(name:ID, newXPath:XPath) supplies newXPath as the argument for parameter name

Program.parameterizeTypedString(name:ID, origString:String) replace origString with the parameter name

Program.useTypedString(name:ID, string:String) supplies string as the argument for parameter name

Program.parameterizeFrame(name: ID, origFrame: FrameID) replace origFrame with the parameter name

Program.useFrame(name:ID, frame: FrameID) supplies frame as the argument for parameter name

Table 2: The API for parameterizing Ringer programs.

of modes o↵ers a convenient way to customize Ringer’s be-
havior without modifying its internals.

4. SYSTEM DEMONSTRATION
We used WebCombine to collect the citation counts of all

papers by the 10,000 most-cited authors pursuing Computer
Science research, as listed in Google Scholar [6]. Our Web-
Combine demonstration explores the question of when Com-
puter Science researchers peak, based on the years in which
they publish their most-cited works. With only Google
Scholar data, it is di�cult to draw firm conclusions about
a relationship between age and impact. However, we think
the data at least reveal some interesting patterns.

WebCombine is implemented as a standalone Chrome ex-
tension. Find the source and a video of this demo at https:

//github.com/schasins/structured-data-scraping-extension.

4.1 Data Collection
In the first data collection stage, we collected a set of

tags. In Google Scholar, an author tagged with “Program-
ming Languages” does not appear in a search for the “Com-
puter Science” tag. Unfortunately, most authors are tagged
with their specific subfields of interest, and hardly any with
the “Computer Science” tag. Thus, collecting a good set of
tags for identifying Computer Science researchers is its own
scraping challenge. We leverage the fact that authors tagged
with the “Computer Science” tag are often also tagged with
their subfields of interest. We used WebCombine to create a
loop over all the tags of all 16,979 authors in the results for
the query ‘ “computer science” OR label:computer science’.
The result was a dataset of 51,752 tags. This included 11,439
unique tags, with frequencies ranging from 3,308 (“com-
puter science”) to 1 (e.g. “minimally cognitive agents”, “mis-
spellings”, “lifestyle informatics”, “yoga”).

In the second stage, we scraped data about papers by
the 10,000 most-cited researchers in Computer Science. To
identify authors working in Computer Science, we used the
tags collected in Stage 1. We sorted them by frequency, re-
moved tags that are not primarily associated with Computer
Science (e.g. “mathematics”), then selected the 65 most fre-
quent tags. We used WebCombine to iterate over all authors
with the tags, and over all those authors’ papers, as detailed
in Section 2. The output was a dataset of 3,787,146 paper
records, each with a year and a citation count.

4.2 Data Analysis
Figure 2 reveals that, naturally, authors with short careers

publish their most-cited works soon after beginning their
publishing careers. However, authors with longer careers
appear to remain influential well into those long careers.

In this dataset, the average author receives 26.8% of her
total citations for work completed before her 10th year of
publishing, 59.1% for work before her 20th year, 78.5% for
work before her 30th year, and 89.7% for work before her
40th year. Highly influential authors are more likely than
less influential authors to write important works later in

Figure 2: For each author, this graph displays the length of
the author’s publishing career against the years of experience
when his or her most-cited paper was published.

their careers. We find that among the top 5,000 authors,
36.4% garnered more than half of their total citations from
works published after the 20th year of their career. For
authors in the next 5,000, the rate drops to 18.7%.

5. CONCLUSION
We believe this demonstration constitutes preliminary ev-

idence that R+R is a useful and usable building block for
complicated end-user web automation tools. Our clean in-
terface with a robust R+R layer allowed us to build a com-
plex tool that empowers non-programmers to scrape large
datasets, even from pages that demand user interaction.
Going forward, we expect to see more and more end-user
programming tools leveraging robust R+R.

6. ACKNOWLEDGEMENTS
This work is supported in part by NSF Grants CCF-

1018729, CCF-1139138, CCF-1337415, and CCF-0916351,
NSF Graduate Research Fellowship DGE-1106400, a grant
from DOE FOA-0000619, a grant from DARPA FA8750-14-
C-0011, and gifts from Mozilla, Nokia, Intel and Google.

7. REFERENCES
[1] Brad Adelberg. NoDoSE - a tool for semi-automatically

extracting structured and semistructured data from
text documents. In SIGMOD Record, 1998.

[2] Nicholas Kushmerick, Daniel S. Weld, and Robert
Doorenbos. Wrapper induction for information
extraction. In Proc. IJCAI-97, 1997.

[3] Gilly Leshed, Eben M. Haber, Tara Matthews, and
Tessa Lau. Coscripter: automating & sharing how-to
knowledge in the enterprise. CHI ’08.

[4] James Lin, Je↵rey Wong, Je↵rey Nichols, Allen
Cypher, and Tessa A. Lau. End-user programming of
mashups with Vegemite. IUI ’09.

[5] sbarman/webscript. https://github.com/sbarman/webscript.
[6] Google Scholar. Google scholar citations.

http://scholar.google.com/citations?view_op=search_authors.

182

https://github.com/schasins/structured-data-scraping-extension
https://github.com/schasins/structured-data-scraping-extension
https://github.com/sbarman/webscript
http://scholar.google.com/citations?view_op=search_authors

	Introduction
	User Interaction
	System Architecture
	List Finder
	R+R
	The Basic R+R Interface
	Parameterizing R+R Programs
	Customizing R+R Itself


	System Demonstration
	Data Collection
	Data Analysis

	Conclusion
	Acknowledgements
	References



