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Abstract. Probabilistic programming languages (PPLs) provide users
a clean syntax for concisely representing probabilistic processes and easy
access to sophisticated built-in inference algorithms. Unfortunately, writ-
ing a PPL program by hand can be difficult for non-experts, requiring
extensive knowledge of statistics and deep insights into the data. To
make the modeling process easier, we have created a tool that synthe-
sizes PPL programs from relational datasets. Our synthesizer leverages
the input data to generate a program sketch, then applies simulated an-
nealing to complete the sketch. We introduce a data-guided approach
to the program mutation stage of simulated annealing; this innovation
allows our tool to scale to synthesizing complete probabilistic programs
from scratch. We find that our synthesizer produces accurate programs
from 10,000-row datasets in 21 seconds on average.

1 Introduction

Probabilistic programming languages (PPLs) enable users who are not experts
in statistics to cleanly and concisely express probabilistic models [10, 20, 11].
They offer users simple abstractions and easy access to sophisticated statistical
inference algorithms [16, 22, 4, 18] for analyzing their models.

However, writing a PPL model by hand is still challenging for non-statisticians
and non-programmers. First, understanding data is difficult. Reviewing large
amounts of data to develop a mental model is time-consuming, and humans are
prone to misinterpretations and biases. Second, translating insights to a precise
statistical model of the data is difficult. To write probabilistic models that re-
flect their insights, users must first learn some probability theory, understand
the subtleties of various probability distributions, and express the details of how
different variables in a model should depend on each other.

For these reasons, we believe PPL models should be synthesized from datasets
automatically. PPL models offer an interesting point in the modeling design
space. Expressing models in PPLs does not make them more expressive or more
accurate, but it does give users access to powerful abstractions. They can easily
ask how likely an event is in a model, performing complicated inference tasks
with a single line of code. They can turn a generative model into a classifier or a
predictor in under a minute. They can hypothesize alternative worlds or insert
interventions and observe how those edits change outcomes. The PPL synthesis
in this paper is not aimed at producing models that exceed the accuracy of state-
of-the-art ML on important problems, but we believe a PL-centric approach does
put usable, powerful models in the hands of non-experts.
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To date, we know of one tool, PSketch[23], that synthesizes PPL programs.
PSketch takes as input a PPL sketch and a dataset. A sketch, in this case, is
a nearly complete PPL program, with some holes. Once a user expresses which
variables may affect each hole, PSketch synthesizes expressions to fill the holes.
While synthesizing partial PPL programs is already a tremendous step forward,
the sketch writing process still requires users to carefully inspect the data, write
most of the program structure, and specify causal dependencies. Ultimately, the
user still writes a piece of code that is quite close to a complete model.

We introduce DaPPer (Data-Guided Probabilistic Program Synthesizer), a
tool that synthesizes full PPL models from relational datasets. Our system de-
composes the PPL synthesis problem into three stages. In the first stage, we
generate a graph of dependencies between variables using one of three tech-
niques: including all possible dependencies, analyzing the correlation between
variables, or applying network deconvolution [8]. We use the dependency graph
to write a program sketch that restricts the program structure. Second, we fill
the holes in our sketch using a data-guided stochastic synthesis approach built
on top of simulated annealing. At each iteration of our search, we mutate the
candidate program and use the input dataset to tune some program parameters.
We follow PSketch in computing the candidate’s score — its likelihood given the
dataset — using Mixtures of Gaussian distributions. Finally, after we obtain an
accurate program from the prior stage, we use a redundancy reduction algorithm
to make the output program more readable while maintaining its accuracy.

We have evaluated our synthesizer on a suite of 14 benchmarks, a mix of
existing PPL models and models designed to stress our tool. Each benchmark
in the suite has 10,000 rows of training data and 10,000 rows of test data, both
generated from the same probabilistic model; thus, each benchmark is also asso-
ciated with a ground truth PPL program to which we can compare synthesized
programs. In our experiments, our synthesizer produced accurate models in 21
seconds on average. To test whether our approach works on real data, we also
used DaPPer to synthesize a model of airline delay data. Leveraging our target
PPL’s built-in inference functionality, we used this model to predict flight delays.

This paper makes the following contributions:
– We present a tool for synthesizing PPL models from data. To our knowledge,

this is the first synthesizer that generates full PPL models.
– We introduce a data-guided stochastic technique for generating candidate

programs. Data-guidance improves synthesis time by two orders of magni-
tude compared to a data-blind approach.

– We compare three techniques for generating dependency graphs from data.
– We present an algorithm for improving program readability after synthesis

while maintaining accuracy. We can reduce the size of a synthesized program
by up to 8x with less than a 1% penalty in accuracy.

2 Probabilistic Programs

Probabilistic programming languages are standard languages with two additional
constructs: (i) random variables whose values are drawn from probability distri-
butions, and (ii) mechanisms for conditioning variable values on the observed val-
ues of other variables [12]. Although these constructs form a common backbone,
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random Boolean Burglary ~ BooleanDistrib(0.001);
random Boolean Earthquake ~ BooleanDistrib(0.002);
random Boolean Alarm ~
if Burglary then
if Earthquake then BooleanDistrib(0.95) else BooleanDistrib(0.94)

else
if Earthquake then BooleanDistrib(0.29) else BooleanDistrib(0.001);

random Boolean JohnCalls ~ if Alarm then BooleanDistrib(0.9) else BooleanDistrib(0.05);
random Boolean MaryCalls ~ if Alarm then BooleanDistrib(0.7) else BooleanDistrib(0.01);

Fig. 1: The classic burglary model in BLOG (a PPL).

other language features vary greatly from PPL to PPL[10, 20, 11]. Probabilistic
programs offer a natural way to represent probabilistic models. For example, the
classic burglary model can be expressed with the PPL program in Figure 1.

The output of a probabilistic program is not a value but a probability dis-
tribution over all possible values. While a deterministic program produces the
same value for a given variable during every execution, a probabilistic program
may produce different values. The value of each variable is drawn from one or
more probability distributions, as defined by the programmer. We can obtain an
approximation of the distribution of a variable by running the program many
times. For example, if we run the burglary program in Figure 1 many times, we
observe that Burglary has the value true in approximately 0.001 of the execu-
tions. Alarm only becomes common if Burglary or Earthquake is true, but both
are rare, so running the program also reveals that Alarm is often false.

Programmers can add observations in PPLs to obtain posterior probability
distributions conditioned on the observations. For example, if we run our sam-
ple program with an observation statement obs JohnCalls = true, the program
rejects executions in which JohnCalls is false, and we observe that in many runs
Burglary is also true. For a thorough introduction to PPLs, we recommend [12].

3 System Overview

We will explain DaPPer with a working example, a model of how a student’s
tiredness and skill level affect performance on a test. The inputs to our tool are
a relational dataset (e.g. Table 1) and a hypothesis about the direction of causal
links between variables. Each column in a dataset is treated as a variable in the
output program, and each row represents an independent run of the program. A
causation hypothesis is an ordering of the dataset column identifiers; for our run-
ning example, the hypothesis might be tired→ skillLevel→ testPerformance.
The order specifies the direction of dependencies but does not restrict which
variables are connected. From the given order, we can conclude that if tired
and testPerformance are related, tired affects testPerformance, rather than
testPerformance affecting tired. While this means that our tool still demands
some insights from users, they only have to use their knowledge of the world
to guess in which direction causality may flow; that is, our tool does not ask
‘is there a relationship between tiredness and test performance?’ but it asks ‘if
there is a relationship between the two, does tiredness affect test performance, or
does test performance affect tiredness?’ In Figure 2, we show the ground truth
program that produced the data in Table 1.
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tired skillLevel testPerformance
true 10.591 27.437
false 12.862 67.976
false 8.727 70.787
true 10.333 31.113
true 11.440 31.592
... ... ..

Table 1: Dataset with the tired-
ness, skill level, and test perfor-
mance of several students.

random Boolean tired ~ BooleanDistrib(.5);
random Real skillLevel ~ Gaussian(10, 7);
random Real testPerformance ~
if skillLevel > 13.0 then
if tired then Gaussian(70, 15) else Gaussian(95, 5)

else
if tired then Gaussian(30, 15) else Gaussian(70, 5);

Fig. 2: Running example, a program that ex-
presses a model of how a student’s tiredness and
skill level affect test performance.

A B C

true low 3.2

false med 4.5

... ... ...

Dataset

Causal Order Hypothesis
A → B → C

Program
Structure

Generation

Program
Structure

Redundancy
Reduction

Output PPL Program
random Real A ~
  Boolean(.9);

random Level B ~
  if A then
  Categorical(...)
  else
  Categorical(...)
  ...

Synthesizer

Stochastic Mutation + 
Data Guidance

Likelihood Estimation

Data-Guided Stochastic 
Synthesis

Fig. 3: A system diagram illustrating the workflow of the synthesizer.

DaPPer generates PPL programs by decomposing the synthesis task into
three subtasks: (i) dependency graph generation, (ii) data-guided stochastic syn-
thesis, and (iii) redundancy reduction. In this section, we briefly discuss their
roles, and how they interoperate, as illustrated in Figure 3.

3.1 Dependency Graph Generation

The synthesizer’s first task is to determine whether any given random variable
— any given dataset column — depends on any other random variables. This
problem corresponds to the model selection problem in Bayesian networks. In
our context, this is the dependency graph generation problem because a directed
graph of which variables affect which other variables defines a program structure.

We explore three techniques for generating dependency graphs. First, a Com-
plete approach produces the largest possible dependency graph that the user’s
causation hypothesis permits. Second, a Simple Correlation approach adds edges
greedily in order of correlation, from highest to lowest, excluding edges for which
there already exists a path. Third, we use an existing Network Deconvolution al-
gorithm [8]. Given a dataset like the one in Table 1 and the causation hypothesis
represented by the order of the columns (tired→ skillLevel→ testPerformance),
the three techniques produce the dependency graphs depicted in Figure 4.

Given a dependency graph, we generate a sketch. For each variable x depend-
ing on {x1, x2, ...}, we define x as a nested conditional expression with holes:

x ~ if ( x1 ?? ?? )
then if ( x2 ?? ?? ) . . .
else if ( x2 ?? ?? ) . . .

For each condition (xi ?? ??), the first ?? is a comparison operator, and the
second ?? is an expression. Figure 5 shows the sketches generated from the
dependency graphs in Figure 4.
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Fig. 4: The dependency graphs generated for the dataset sampled in Table 1.

random Boolean tired ~
BooleanDistrib(??);

random Real skillLevel ~
if tired then ?? else ??;

random Real testPerformance ~
if tired then
if (skillLevel ?? ??)
then ?? else ??

else
if (skillLevel ?? ??)
then ?? else ??;

(a) Complete

random Boolean tired ~
BooleanDistrib(??);

random Real skillLevel ~ ??;
random Real testPerformance ~
if tired then
if (skillLevel ?? ??)
then ?? else ??

else
if (skillLevel ?? ??)
then ?? else ??;

.

(b) Simple correlation

random Boolean tired ~
BooleanDistrib(??);

random Real skillLevel ~
if tired then ?? else ??;

random Real testPerformance ~
if (skillLevel ?? ??)
then ?? else ??;

.

(c) Network deconvolution

Fig. 5: The program skeletons generated from the dependency graphs in Figure
4. We use ?? to represent a part of the program that we have not yet synthesized.

3.2 Data-Guided Stochastic Synthesis

The second task is to complete the holes ?? in the program sketch generated by
the previous step. We use simulated annealing (SA) to complete this task.

In each SA iteration, DaPPer creates a new program candidate from a current
candidate by (i) mutating an expression, then (ii) deterministically updating
all parameters in the program associated with the mutated expression, using
knowledge about the data. Consider the candidate program in Figure 6(a), a
completion of the Figure 5(c) program sketch. To generate a new candidate, our
tool randomly mutates one condition, changing the RHS of a comparison from
15 to 16; this produces the sketch in Figure 6(b). With the condition changed,
the parameters for the distributions are out of date. DaPPer identifies all rows
of the input data in which skillLevel is less than 16, then uses those rows to
select parameters for the distributions in the true branch, and the remaining
rows for the false branch, producing the new program in Figure 6(c).

To evaluate programs, DaPPer uses a custom likelihood estimation approach.

3.3 Redundancy Reduction

Sometimes the most accurate model that results from the synthesis step is a
model that distinguishes between many cases, even more than the ground truth.
Such models can be very large, often unreadable. Because our goal is to pro-
duce readable programs from which users can extract high-level insights, this is
undesirable for our purposes.

To improve the readability of our outputs, we developed a redundancy re-
duction algorithm that collapses similar branches. Because this is applied as a
final processing stage to an already synthesized program, the reduction process
is very fast, and users can easily and quickly tune the amount of reduction to
their needs, based on the output at hand.



6 Data-Driven Synthesis of Full Probabilistic Programs

random Boolean tired ~
BooleanDistrib(.500);

random Real skillLevel ~
if tired
then Gaussian(9.987, 7.000)
else Gaussian(10.000, 7.003);

random Real testPerformance ~
if (skillLevel < 15)
then Gaussian(44.875, 7.729)
else UniformReal(25.300, 120.276);

(a) Current candidate

random Boolean tired ~
BooleanDistrib(.500);

random Real skillLevel ~
if tired
then Gaussian(9.987, 7.000)
else Gaussian(10.000, 7.003);

random Real testPerformance ~
if (skillLevel < 16)
then Gaussian(??, ??)
else UniformReal(?? , ??);

(b) Stochastic mutation

random Boolean tired ~
BooleanDistrib(.500);

random Real skillLevel ~
if tired
then Gaussian(9.987, 7.000)
else Gaussian(10.000, 7.003);

random Real testPerformance ~
if (skillLevel < 16)
then Gaussian(46.227, 7.663)
else UniformReal(25.300, 125.113);

(c) Data-guided completion

Fig. 6: One mutation of the program in Figure 5(c). Pink highlights the changes.

prog ::= statement prog | ε

statement ::= ‘random’ type ident ‘~’ expr ’;’
type ::= ‘Boolean’ | ‘Real’ | categoricalTypeIdent
expr ::= distrib | condExpr
condExpr ::= ‘if’ cond ‘then’ expr ‘else’ expr
distrib ::= ‘BooleanDistrib(’ real ‘)’ | ‘Categorical({’ categoricalMap ‘})’

| ‘Gaussian(’ real ‘,’ real ‘)’ | ‘UniformReal(’ real ‘,’ real ‘)’
| ‘Gamma(’ real ‘,’ real ‘)’ | ‘Beta(’ real ‘,’ real ‘)’

categoricalMap ::= categoricalValue ‘->’ real | categoricalMap ‘,’ categoricalMap
cond ::= ident | ident cmpOp cmpExpr | cond ‘|’ cond
cmpOp ::= ‘==’ | ‘>’ | ‘<’
cmpExpr ::= ident | boolean | categoricalValue | real

| cmpExpr numOp cmpExpr
numOp ::= ‘+’ | ‘-’ | ‘*’

Fig. 7: The subset of the BLOG language used by our synthesizer.

4 Language

DaPPer generates programs from the grammar shown in Figure 7. This grammar
represents a subset of the BLOG language [20], centered on the features necessary
for declaring random variables.1 While BLOG has many interesting features that
set it apart from other PPLs, such as open-universe semantics, our synthesized
programs do not make use of these. DaPPer needs only the features that allow it
to introduce random variables drawn from distributions and describe how they
depend on other random variables.

Many PPLs can express such programs, so many PPLs would be reasonable
target languages. We chose to synthesize programs in the BLOG language, but
with small changes to our code generator, DaPPer could easily target others.

5 Generating Dependency Graphs

We use dependency graphs to generate a skeleton program structure, a program
with variable declarations and partial conditional expressions in their definitions,
but without the conditions or bodies. To generate these dependency graphs, we
have tested three approaches, which we describe here.

1 We leave out details of type declarations, which BLOG requires and our tool syn-
thesizes, but which present no interesting technical challenges.
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5.1 Complete

The complete approach constructs a dependency graph based on the assumption
that each variable depends on all other variables that precede it in the user’s
causation hypothesis. Note that this approach does not use the input dataset.
If the user provides the hypothesis A → B → C → D, the complete approach
produces a graph in which A depends on no other variables, B depends on {A},
C depends on {A,B}, and D depends on {A,B,C}.

If the causation hypothesis is correct, this approach is always sufficient to
express the ground truth. It breaks the outcomes into the largest number of
cases and thus theoretically allows the greatest customization of the program
to the input data. However, it may also introduce redundancy, distinguishing
between cases even when the distinction does not affect the outcome.

5.2 Correlation Heuristic

The correlation heuristic approach uses information from the input dataset as
well as the causation hypothesis. It calculates the correlation for every pair of
columns in the dataset. The pairs are sorted according to the effect size of the
correlation. We iterate through the sorted list of pairs, checking for each pair
(A,B) whether there is already a path in the dependency graph between A and
B. If yes, we do nothing. If no, we add an edge between A and B; the direction of
the edge is determined by the positions of A and B in the causation hypothesis
ordering. If we reach a point in the list of pairs where the correlation effect size
or statistical significance is very low, we stop adding edges.

See Appendix 13 for a summary of how we produce correlation measures for
columns with incompatible types.

5.3 Network Deconvolution

Our final approach uses the network deconvolution algorithm, developed by Feizi
et al [8], a method for inferring which nodes in a network directly affect each
other, based on an observed correlation matrix that reflects both direct and
indirect effects. To build a PPL model, we can observe the correlation between
each pair of columns, but should only condition a variable on the variables
that directly affect it. Thus, a direct link from x to y in network deconvolution
corresponds to an immediate dependence of y on x in a PPL model.

Network deconvolution takes as input a similarity matrix. We use a symmet-
ric square matrix of correlations, reflecting the association of each column with
each other column in the dataset. Each entry in the network deconvolution out-
put matrix represents the likelihood that a column pair is connected by a direct
edge. For each entry in the output matrix, we add an edge to the dependency
graph if it is above a low threshold.

6 Data-Guided Stochastic Synthesis

DaPPer applies simulated annealing (SA) to synthesize PPL programs. We use
an exponential cooling schedule and the standard Kirkpatrick acceptance prob-
ability function. To apply SA, we must generate new candidate programs that
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are ‘adjacent’ to existing programs. Our synthesizer decomposes the process of
creating a new candidate program into two stages: make a random mutation of
the current candidate program (Section 6.1), then tune all parameters in the
affected subtree of the AST to best match the input dataset (Section 6.2). Once
a new candidate has been produced, SA scores the candidate to decide whether
to accept or reject it (Section 6.3).

6.1 Mutations

The first step in creating a new adjacent program is to randomly mutate the
current program. We allow three classes of mutation, described below.

Conditions Our synthesizer is permitted to synthesize conditions of a re-
stricted form (see cond in Figure 7). They must have a single identifier (fixed
based on the dependency graph) on the LHS, and an expression on the RHS.
Because we deterministically generate fixed RHSs for conditions with Boolean
and categorical variables in the LHS (e.g., boolVar == true, boolVar == false),
the mutation process may not manipulate those conditions. Instead, its primary
role is to generate new RHSs for conditions associated with real-valued variables.
To alter a RHS, the mutator may: (i) replace any constant or use of a real-valued
variable with a new constant or real-valued variable, (ii) slightly adjust a current
constant, (iii) add, remove, or change a numOp, (iv) change a cmpOp.

Branches Less commonly, the mutator may add or remove a condition as-
sociated with a real-valued variable. The mutator may not alter the structure
of the dependency graph, but it may add a branch to an existing case split or
remove a branch if it has more than two.

Distribution Selection Finally, the mutator may alter what type of dis-
tribution appears in the body of a conditional, for definitions of real-valued
variables. For instance, it may change a Gaussian to a UniformReal distribution.

6.2 Data Guidance

Once we obtain the control flow for a new candidate program from the mutator,
we tune the distribution parameters to fit the dataset. For each distribution
node in the abstract syntax tree, we identify the path condition associated with
the node. We convert the path condition into a filter on the input dataset. For
instance, consider the control flow in Figure 8(a). To produce the parameter
for the first Boolean distribution node, we would produce the path condition
Burglary ∧ Earthquake. Using this as a filter over the input dataset would
produce the rows highlighted in Figure 8(b). Once we have identified the subset
of the dataset consistent with a distribution’s path condition, we use the subset
to calculate appropriate distribution parameters. For instance, if the distribution
is a Gaussian, we calculate the mean and variance.

Once DaPPer completes this process for all distributions whose path condi-
tions are affected by the mutation, the candidate generation stage is complete.

6.3 Likelihood Estimation

To evaluate how well a program models a dataset, we must compute the like-
lihood L(P |D) of a candidate program P given the input data D. Computing
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if

Burglary if

Earthquake B(??) B(??)

if

Earthquake B(??)B(??)

Alarm ~

(a) Part of a candidate control flow.

Burglary Earthquake Alarm
T F T

F F F

T T T

F T F

T T F

... ... ...

(b) Red rows satisfy (a)’s red path condition.

Fig. 8: Filtering a dataset for a path condition in the classic burglary model.

the exact likelihood [6] requires expensive integral computations, which makes
scoring slow. Thus, we adopt the method used by PSketch [23] for approximating
likelihood using Mixtures of Gaussian (MoG) distributions, which they show is
three orders of magnitude faster than precise likelihood calculation [23].

The approach is to symbolically approximate every variable in a candidate
program with MoG or Bernoulli distributions. We approximate real-valued ex-
pressions using a MoG, whose probability density function (PDF) is:

MoG(x;n,w,µ,σ) =

n∑
i=1

wi · g(x;µi, σi)

where w,µ, and σ are vectors of size n, representing the weight, mean, and stan-
dard deviation of each Gaussian distribution in the mixture. The function g is the
PDF of a univariate Gaussian distribution. A Boolean expression is simply mod-
eled as a Bernoulli distribution, Brn(x; p). Therefore, we approximate each vari-
able v in a program as a MoG with the PDFMoGv(x) =MoG(x;nv,wv,µv,σv)
or a Bernoulli with the PDF Brn(x; pv).

The approximation of L(P |D) is the product of the likelihood of all possible
values of all variables from D given the program P :

L(P |D) =
∏

v∈PRV

∏
x∈D[v]

MoGv(x)×
∏

v∈PBV

∏
x∈D[v]

Brn(x; pv)

where PRV is a set of real variables and PBV is a set of Boolean variables in the
program P that appear in data D. D[v] is a set of values of the variable v in D.

In addition to the distributions supported by PSketch, we add support for
categorical distributions and uniform distributions, which we describe here.

Categorical Distribution A categorical distribution specifies probabilities for
each value in a finite discrete set. The PDF of a categorical distribution is:

Ctg(x; {(xi → pi)|i ∈ {1, ..., k}}) = piwhen x = xi

We introduce reduction rules to symbolically evaluate expressions with cat-
egorical distributions, shown in Figure 9. The first rule evaluates an if ex-
pression, which may contain categorical distributions. The second rule eval-
uates a case expression. Although a case expression can be desugared to a



10 Data-Driven Synthesis of Full Probabilistic Programs

[[ite(Brn(x; p), Y1, Y2)]] := [[(p⊗ Y1)⊕ ((1− p)⊗ Y2)]]

[[case([(Ctgv(x) == x1, Y1), (Ctgv(x) == x2, Y2), ...,

(Ctgv(x) == xk, Yk)])]] := [[(p1 ⊗ Y1)⊕ (p2 ⊗ Y2)⊕ ...⊕ (pk ⊗ Yk)]]

where Ctgv(x) = Ctg(x; {(xi → pi)|i ∈ {1, ..., k}}) where Yi is either Bernoulli, categorical, or MoG

[[Brn(x; p1)⊕ Brn(x; p1)]] := Brn(x; p1 + p2)

[[Ctg(x; {(xi → p
1
i )|i ∈ {1, ..., k}})⊕

Ctg(x; {(xi → p
2
i )|i ∈ {1, ..., k}})]] := Ctg(x; {(xi → p

1
i + p

2
i )|i ∈ {1, ..., k}})

[[MoG(x;n1,w1,µ1,σ1)⊕MoG(x;n2,w2,µ2,σ2)]] := MoG(x;n1 + n2,w1‖w2,µ1‖µ2,σ1‖σ2)

where ‖ represents vector concatenation

[[c⊗ Brn(x; p)]] := Brn(x; c× p)
[[c⊗ Ctg(x; {(xi → pi)|i ∈ {1, ..., k}})]] := Ctg(x; {(xi → c× pi)|i ∈ {1, ..., k}})

[[c⊗MoG(x;n,w,µ,σ)]] := MoG(x;n, c×w,µ,σ)

Fig. 9: Reduction rules to symbolically execute expressions that use categorical
distributions.

nested if expression, the PDF that results is often less precise. In particu-
lar, case([(Ctgv(x) == x1, Y1), (Ctgv(x) == x2, Y2), ...]) can be desugared to
ite(Ctgv(x) == x1, Y1, ite(Ctgv(x) == x2, Y2, ...)), where
Ctgv(x) = Ctg(x; {(xi → pi)|i ∈ {1, ..., kv}}). When we evaluate the former ex-
pression, we expect the resulting distribution to be the summation of Y1, Y2, ...,
Yk−1, Yk weighted by p1, p2, ..., pk−1, pk respectively. However, if we evaluate
the latter expression using the first rule, we will obtain the summation of Y1, Y2,
..., Yk−1, Yk weighted by p1, (1 − p1)p2, ..., (

∏k−2
i=1 (1 − pi))pk−1,

∏k−1
i=1 (1 − pi)

respectively. This is because the ite rule is designed for the scenario in which
path conditions are independent. Therefore, we introduce the case rule to han-
dle case expressions whose conditions are dependent and mutually exclusive in
order to obtain better likelihood estimations. The remaining rules in Figure 9
define how to evaluate ⊕ and ⊗ used in the ite and case rules.

Uniform Real Distribution A uniform real distribution has constant proba-
bility for any real number between a lower bound a and an upper bound b. The
PDF of a uniform real distribution is defined as:

Uniform(x; a, b) =

{
1
b−a if a ≤ x ≤ b
0 otherwise

We approximate a uniform distribution as follows:

[[Uniform(x; a, b)]] :=MoG(x;n,w,µ,σ)

where wi =
1

n
, µi = a+ (i+

1

2
) · b− a

n
, σi =

b− a
n

We use n = 32. We can obtain better approximations by increasing n, but at
the cost of slower evaluation.
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7 Redundancy Reduction

To improve the readability of our outputs, we have developed a simple redun-
dancy reduction algorithm that combines the similar branches of a given con-
ditional expression. The key idea is to compare the parameters of branches’
descendant distributions. For a pair of branches, we align the two sets of descen-
dant distributions according to their associated path condition suffixes. These
distribution pairs are the pairs that we combine if we collapse the branches into
a single branch for executions that satisfy either of their path conditions. The
decision to collapse them is based on both the differences in distribution pairs’
parameters and on how much data DaPPer used to tune them.

For a concrete example, recall that in the classic Burglary model, MaryCalls
does not depend on JohnCalls. After stochastic synthesis, we might see the
following snippet within the MaryCalls definition: if JohnCalls then Boolean(
0.010) else Boolean(0.008). The parameters of the distributions in these two
branches are very close. Further, we know both parameters were trained on a
small number of rows. Given normal reduction parameters, this would lead our
algorithm to collapse the two branches into something like Boolean(0.009) –
essentially to conclude that MaryCalls does not depend on JohnCalls.

Our algorithm accepts two user-selected threshold parameters. By manipu-
lating these parameters, users can explore different levels of readability without
having to re-synthesize. Reduction is applied as a fast post-processing step, after
the bulk of the synthesis is completed, so users can quickly and easily tune the
amount of redundancy reduction to their needs. They can choose to edit and
run analyzes on a readable version, knowing how much accuracy they have sac-
rificed, or they can temporarily adjust reduction parameters to extract high-level
insights about program structure without permanently sacrificing accuracy.

See Appendix 14 for the full algorithm and details of the motivation.

8 Limitations

We see several limitations of the current synthesizer, all of which suggest inter-
esting directions for future work.

Relational Input Data Our approach handles only relational datasets,
specifically relational datasets that treat each row as an independent run of
the program. While there are many such datasets and our tool already allows
us to model many interesting processes, our current technique does not apply
for datasets that cannot be transformed into this format. Thus, we cannot take
advantage of some of the BLOG language’s more interesting features (e.g., open-
universe semantics, which allows programs in the language to represent uncer-
tainty about whether variables exist, or how many variables there are of a given
type). For our current synthesis model, we must know the number of variables.

Hidden Variables Our synthesis model assumes there are no hidden vari-
ables, that no additional columns of data about the world are necessary to pro-
duce a correct output. Our decision to exclude hidden variables is one of the
crucial differences from the PSketch[23] approach. While PSketch is targeted
at programmers looking to write functions that include randomness, we want
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our tool to be accessible to scientists and social scientists modeling real world
phenomena. For these purposes, we expect that hypothesizing the existence of a
hidden variable — which may have no correspondence to any real world variable
— would only confuse the user and make output models less intelligible and less
useful to the target audience. We see the addition of optional hidden variable
introduction as an interesting technical challenge and a good direction for future
work. However, we would never make hidden variable hypotheses the default.
Although we believe this is a improvement over PSketch from the perspective of
our target user, this is a limitation from the perspective of a PSketch user.

Restricted Grammar For this first foray into synthesis of full PPL pro-
grams, we selected a fairly restricted grammar. We examined many existing
BLOG models and designed a grammar that would express the sorts of models
people already like to write. However, we find it easy to imagine models we would
like to obtain that cannot be expressed in our chosen subset of BLOG. Although
this may be the most serious limitation, it is also the most easily addressed,
since we can cleanly extend our technique by simply expanding the grammar
and the set of allowable mutations. Because each increase in the grammar size
also expands the search space, this will probably be more than a trivial exten-
sion. We expect it may offer a good setting for exploring the use of a probabilistic
language model and weighted search for a program synthesis application.

9 Evaluation

We evaluated DaPPer on a suite of 14 benchmarks. Each benchmark consists
of 10,000 rows of training data, 10,000 rows of test data, and the ground truth
BLOG program used to generate both datasets. Some benchmarks were taken di-
rectly from the sample programs packaged with the BLOG language. Since these
were quite simple, we also wrote new programs to test whether our tool can syn-
thesize more complex models. The DaPPer source and all benchmark programs
and associated datasets are available at github.com/schasins/PPL-synthesis.
DaPPer synthesized accurate programs for all benchmarks, taking less than 21
seconds on average. We also used DaPPer to generate a model of a real flight
delay dataset.

9.1 Dependency Graph Generation

We start with an exploration of how dependency graphs affect synthesis time
and accuracy. Recall that the Complete approach produces the largest possi-
ble dependency graph. The Correlation approach produces graphs smaller than
Complete graphs but usually larger than Network Deconvolution (ND) graphs.

Figure 10(a) shows how the choice of dependency graph affects synthesis
time. Each bar represents the average time DaPPer took to synthesize a program
whose score on the test dataset is within 10% of the ground truth program’s.
Each synthesis task ran for a fixed number of SA iterations. The Figure 10(a)
timing numbers represent the first point during those iterations at which the
current candidate program achieves the target likelihood score on the test (hold-
out) dataset. For all benchmarks except ‘students,’ all dependency graphs were
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sufficient to reach the target accuracy within the allotted SA iterations. The
average times to reach the target accuracy using the Complete and Correlation
approaches were 20.90 and 55.77 seconds, respectively. If we exclude ‘students,’
we can compare all three; Complete averaged 12.54 seconds, Correlation 44.40,
and ND 15.02.

We observe a number of trends playing out in the timing numbers. First,
Complete gains a small early time advantage by generating a dependency graph
without examining the input data, while Correlation and ND both face the
overhead of calculating correlations. This head start gave Complete the win for
the first six benchmarks. Second, using the dependency graph closest to that of
the ground truth confers a time advantage. If the ground truth dependency graph
is dense, Complete is typically closest, so Complete finishes first (e.g., ‘tugwar-
v1’). If the ground truth dependency graph is sparse, ND is usually closest, so ND
finishes first (e.g., ‘tugwar-v3’). Finally, if any approach eliminates a necessary
dependency, synthesis may fail to reach the target accuracy. Recall from Figure
4 that ND dropped the direct dependence of testPerformance on tired. Thus,
ND never reached the target accuracy for the ‘students’ benchmark.

Next, we evaluate whether DaPPer’s performance is within the acceptable
range. We cannot make a direct comparison to the most similar tool, PSketch,
because the PSketch task is substantially different. Instead, we include some PS-
ketch performance numbers to give a sense of the acceptable timescale. PSketch
synthesized partial PPL programs using small datasets (100–400 rows) in 146
seconds on average. Note that large datasets are desirable because they result
in more accurate programs, but they make synthesis slower because the likeli-
hood estimator must use all the data to calculate a score at each iteration. To
synthesize part of the ‘burglary’ model, PSketch took 89 seconds, while DaPPer
synthesized a full ‘burglary’ model in 0.17 seconds. Again, since the tasks are
very different, these numbers do not indicate that DaPPer outperforms PSketch.
However, we are satisfied with DaPPer’s synthesis times overall.

Figure 10(b) shows the likelihood scores of the final synthesized programs on
the test datasets, normalized by the scores of the ground truth programs. Overall,
the scores reached by the Complete, Correlation, and ND approaches, averaged
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across benchmarks, were 1.014, 1.024, and 1.051, respectively. As expected, larger
dependency graphs typically allowed the synthesizer to reach better scores. Thus,
Complete always produced likelihoods very close to those of the ground truth
programs, with Correlation performing slightly worse, and ND worst of all. Still,
even ND always produced likelihoods within 20% of the ground truth.

Given Complete’s dominance in both synthesis time and accuracy, we con-
clude that Complete is the best dependency graph approach of the three we
tried. If we were to select an approach on a case-by-case basis, we would only
switch away from the Complete strategy when faced with a dataset for which
we strongly suspect the dependency graph is sparse, and even then only if faster
synthesis time is more critical than accuracy. The dominance of the Complete
approach drove us to develop our redundancy reduction algorithm, which allows
us to recover small, readable programs from large ones.

9.2 Data-Guided vs. Data-Blind Stochastic Synthesis

One of the primary innovations of our tool is its use of input data not only to
score candidate programs but also to generate them. We evaluate DaPPer against
DaPPer-blind. DaPPer-blind is a simple data-blind variation on our tool. It is
identical to DaPPer in every way except: (i) in addition to DaPPer mutations,
it may mutate distribution parameters and (ii) it does not run data-guided pa-
rameter adjustment after mutations.

Recall that after each mutation, DaPPer identifies affected distributions and
tunes their parameters to reflect the input data that corresponds to the new
path condition. Thus, the data-guided approach has the advantage of always
producing programs tuned to the input data. However, filtering the data and
calculating the appropriate parameters does impose a time penalty. For this rea-
son, DaPPer-blind can complete more mutations per unit of time than DaPPer.
Thus, it is not immediately clear which approach will perform better.

Our empirical evaluation reveals that the data-guided approach outperforms
the data-blind approach. Figure 11 shows how the likelihood score changed over
time for five runs of DaPPer and DaPPer-blind, for each benchmark. While 100%
of the data-guided runs reached a likelihood within 10% of the ground truth’s
likelihood, only 36% of the data-blind runs reached that same target level. For
the data-guided runs, the average time to achieve the target likelihood was 20.9
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seconds. For the 36% of data-blind runs that did reach the target likelihood, the
average time was 151.6 seconds. Thus, using a data-guided program generation
approach offers at least a 7x speedup compared to a data-blind approach.

We can acquire a better speedup estimate by including the benchmarks
for which the data-blind approach never reached the target accuracy. For each
benchmark, we identified the best (lowest) score that all runs managed to reach
(i.e. the best score of the worst run). Reaching these scores took data-blind syn-
thesis an average of 347.63 seconds and took data-guided synthesis an average
of 0.54 seconds, indicating that data-guidance provides a 648.9x speedup.

9.3 Redundancy Reduction

To explore the tradeoff between accuracy and readability, we evaluated how much
accuracy we lose by applying our redundancy reduction algorithm to our synthe-
sized programs. While Network Deconvolution offers small, readable programs
by default, the other techniques do not. In this section, we explore the effects
of redundancy reduction on programs synthesized using Complete dependency
graphs on a subset of the 14 benchmarks2. We observe up to a 7.9x reduction in
program size, with negligible decreases in accuracy.

Recall that we synthesize programs in which all AST leaf nodes are distri-
bution nodes. For this reason, the number of distribution nodes is the most
informative measure of program size and complexity.

As Figure 12(a) reveals, the reduction process does not make program alter-
ations that substantially alter the likelihood score. However, it does significantly
reduce the size of the program, producing output programs that are much more
readable. Figure 12(b) shows the effects on program size, depicting the ratio of
the number of distribution nodes in the output to the number of distribution
nodes required to express the ground truth. We see that as the reduction pa-
rameter α increases, the synthesized programs ultimately converge to the ground
truth range, but do so gradually enough that the user can explore a variety of
different structures. As we see in Figure 12(a), even when users set α quite
aggressively, the reduction algorithm does not tend to make merges that sub-
stantially alter the likelihood score. Most importantly, we think the benefits for
readability and for extracting high-level insights are clear. For instance, in the
case of the ‘healthiness’ model, reduction collapses a program with 127 distinct
distribution nodes to a much more readable program with 16 distribution nodes.

Overall, we find that redundancy reduction allows us to benefit from the
accuracy and fast synthesis times of the Complete approach without sacrificing
readability and editability. For a more concrete illustration of the resultant read-
ability, see Appendix 15’s side-by-side comparison of a ground truth program and
a synthesized program after redundancy reduction.

2 We test on the subset of benchmarks for which we can align branches using exact
path condition matches. We expect to expand the path condition matching scheme
to align branches with close conditions in future work.
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9.4 Case Study: Airline Delay Dataset

Although testing on data for which we have a ground truth model is the best
way to investigate whether DaPPer produces correct programs, we also want to
be sure that DaPPer functions well on real data. To that end, we completed a
case study using our tool to produce a probabilistic model of a popular airline
delay dataset from the U.S. Department of Transportation [1]. We selected this
dataset because it has already been thoroughly studied, explored, and visualized.
Thus, although we lacked a ground truth PPL model for this dataset, we knew
from past work that we should expect delays to vary according to days of the
week [15] and to increase over the course of the day [35].

We ran DaPPer on a dataset with 447,013 rows. The output program indi-
cates that delays vary by day, reflecting the findings of Heike et al. [15]. It also
indicates that delays rise as the departure time (time of day) rises, reflecting
the findings of Wicklin et al. [35]. Taking advantage of BLOG’s built-in infer-
ence algorithms, we used this model to predict flight delays on a holdout set of
10,000 dataset rows. On average, the model’s predictions were off by less than
15 minutes. While 15 minutes is substantial, it is worth noting that delays in
the dataset range from -82 to 1971. For comparison, a baseline predictor that
always guessed the average flight delay had a root-mean-square-error (RMSE)
of 39.4, while the DaPPer predictor had an RMSE of 24.1.

10 Related Work

The body of research that addresses learning programs from data is far greater
than we can cover, encompassing the entire fields of machine learning and pro-
gram synthesis. Since we are interested in generating models that are both read-
able and probabilistic, we will limit our discussion to approaches that offer at
least one of those characteristics.

10.1 Readable and Probabilistic

Of the related work, our goals are most closely aligned with the goals of PSketch
[23]. The primary difference between our tool and PSketch is the target user.
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We want DaPPer to be accessible to a user who would not manually code even a
partial PPL model. Naturally, this difference in target user comes with a number
of technical differences. First and foremost, while PSketch requires the user to
write a program sketch — including specifying which variables may affect each
program hole — our tool requires no coding. This brings us to the second primary
difference, which is that while PSketch can work over any dataset for which the
user can write most of the model, our tool is targeted specifically at relational
datasets in which each row represents an independent draw from the model.
Third, our tool does not hypothesize the existence of hidden variables that do
not appear in the input dataset. Fourth, PSketch is designed for small datasets
(they tested on datasets up to size 400), while DaPPer is designed to handle
datasets with hundreds of thousands of rows. To make this feasible, DaPPer
uses data-guided mutations, while PSketch’s mutations are data-blind.

10.2 Readable and Deterministic

There has been a massive body of work in deterministic program synthesis and
program induction, some of which may be useful in future iterations of our tool.
Many synthesizers use off-the-shelf constraint solvers to search for candidate
programs and verify their correctness [32, 33, 13]. We cannot directly apply these
techniques to our problem since we do not have precise correctness constraints.
Some recent work uses constraint solving to synthesize programs that optimize
a cost function, with no precise correctness constraint [7]; unfortunately, this ap-
proach is only applicable to cost functions without floating-point computations,
which makes it incompatible with likelihood estimation.

On the other hand, stochastic synthesis is a good fit for our problem. Our
synthesizer is among the many that apply simulated annealing. Other stochas-
tic synthesizers perform MCMC sampling [29, 3]. Some use symbolic regression
or other forms of genetic programming [26, 30, 36, 37]. In the future, we may
investigate how varying the search technique affects DaPPer’s performance.

Some tools use enumerative search. Previous work has shown that enumera-
tive synthesizers outperform other synthesizers for some problems [3, 2, 34, 5, 25].
With custom pruning strategies, this may be another path to faster synthesis.

10.3 Unreadable and Probabilistic

The machine learning literature includes a rich body of work on learning Bayesian
networks. Mainstream techniques fall into two categories: constraint-based and
search-and-score. Constraint-based techniques focus on generating only the pro-
gram structure. Search-and-score treats the problems of learning program struc-
ture and learning program parameters together.

Constraint-based techniques use statistical methods (e.g., chi-squared and
mutual information) to identify relationships between variables in order to pro-
duce a network structure. In short, these techniques perform the same task as
the first stage of our synthesizer. We have intentionally factored out the genera-
tion of the dependency graph from the rest of the synthesis process, which makes
it easy to customize DaPPer with new structure learning approaches, including
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constraint-based Bayesian learning approaches. This is a direction we hope to
explore in the future.

Search-and-score techniques produce not just the network structure but a
complete Bayesian network. Often these techniques produce outputs that can
be translated directly to PPL programs. This makes them seem like a natural
fit with our goals. Unfortunately, existing Bayesian learning techniques cannot
produce readable models in the presence of continuous variables.

There are many search-and-score techniques for learning Bayesian networks
that can be applied to discrete variables [14, 19]. To extend them to contin-
uous variables, one approach is standard discretization [17, 38, 31]. Where our
approach first synthesizes a program structure, then searches over the space of
conditionals, search-and-score first fixes the set of conditionals (via discretiza-
tion), then searches over the space of program structures. This approach leads
discretization-based tools to produce dense ASTs with high branching factors.
An alternative technique uses mixtures of truncated exponentials (MTEs) to do
discretization more flexibly [21, 28]. Despite the attempt to reduce discretiza-
tion, this approach still produces models that use large sets of massive switch
statements with a different exponential distribution at each of hundreds of leaf
nodes. In short, discretized search-and-score methods produce models that are
difficult to read, understand, and adapt. The output models are accurate, but
they do not succinctly express high-level insights into data.

Aside from Bayesian networks, a new class of models called sum-product
networks (SPNs) [27, 9] is both probabilistic and learnable. SPNs are not suitable
for our use case because they are much less readable and editable even than
machine-written Bayesian networks.

Although modeling multiple interacting variables is a more common goal,
some work learns probabilistic models of individual distributions. We know of one
tool designed to generate a fast sampler with outputs that mimic the distribution
of a set of input numbers [24]. If it is fed samples from a Gaussian distribution,
rather than learning that the input can be modeled by a Gaussian, it learns a fast
sampling procedure that produces Gaussian-like data. This tool does not meet
our needs because it can only model a single random variable, not interacting
variables, but also because its outputs are difficult to read and interpret.

11 Conclusion

This paper offers an alternative way for users without statistics expertise to
create probabilistic models of their data. DaPPer synthesizes models quickly
and produces human-readable PPL programs that users can explore, expand, and
adapt. We introduce data-guided program mutation, which allows PPL synthesis
to scale to generating full programs. We hope this extends the class of users
willing to venture into using probabilistic models. We believe offering users full
PPL programs without asking them to write even a single line of code is an
important step towards making PPLs more accessible.



Data-Driven Synthesis of Full Probabilistic Programs 19

12 Acknowledgements

We thank Dawn Song and Rastislav Bodik for their thoughtful feedback. This
work is supported in part by NSF Grants CCF–1139138, CCF–1337415, NSF
ACI–1535191, and Graduate Research Fellowship DGE–1106400, a Microsoft
Research PhD Fellowship, a grant from the U.S. Department of Energy, Office
of Science, Office of Basic Energy Sciences Energy Frontier Research Centers
program under Award Number FOA–0000619, and grants from DARPA FA8750–
14–C–0011 and DARPA FA8750–16–2–0032, as well as gifts from Google, Intel,
Mozilla, Nokia, and Qualcomm.

References

1. RITA | BTS | Transtats. http://www.transtats.bts.gov/DL_SelectFields.
asp?Table_ID=236&DB_Short_Name=On-Time, accessed: 2016-02-05

2. Akiba, T., Imajo, K., Iwami, H., Iwata, Y., Kataoka, T., Takahashi, N., Moskal,
M., Swamy, N.: Calibrating research in program synthesis using 72,000 hours of
programmer time. Tech. rep., MSR (2013)

3. Alur, R., Bodik, R., Dallal, E., Fisman, D., Garg, P., Juniwal, G., Kress-Gazit,
H., Madhusudan, P., Martin, M.M.K., Raghothaman, M., Saha, S., Seshia, S.A.,
Singh, R., Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-guided synthesis. In:
SyGus Competition (2014)

4. Arora, N.S., Russell, S.J., Sudderth, E.B.: Automatic inference in BLOG. In: Sta-
tistical Relational Artificial Intelligence. AAAI Workshops, vol. WS-10-06. AAAI
(2010)

5. Barthe, G., Crespo, J.M., Gulwani, S., Kunz, C., Marron, M.: From relational
verification to simd loop synthesis. In: PPoPP (2013)

6. Bhat, S., Borgström, J., Gordon, A.D., Russo, C.: Deriving probability density
functions from probabilistic functional programs. In: TACAS (2013)

7. Bornholt, J., Torlak, E., Grossman, D., Ceze, L.: Optimizing synthesis with metas-
ketches. In: POPL (2016)

8. Feizi, S., Marbach, D., Médard, M., Kellis, M.: Network deconvolution as a general
method to distinguish direct dependencies in networks. Nature biotechnology 31(8),
726–733 (Aug 2013)

9. Gens, R., Domingos, P.M.: Learning the structure of sum-product networks. In:
ICML (2013)

10. Gilks, W.R., Thomas, A., Spiegelhalter, D.J.: A language and program for com-
plex bayesian modelling. Journal of the Royal Statistical Society. Series D (The
Statistician) 43(1), 169–177 (1994)

11. Goodman, N.D., Mansinghka, V.K., Roy, D.M., Bonawitz, K., Tenenbaum, J.B.:
Church: A language for generative models. In: In UAI. pp. 220–229 (2008)

12. Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic pro-
gramming. In: FOSE 2014 (2014)

13. Gulwani, S., Jha, S., Tiwari, A., Venkatesan, R.: Synthesis of loop-free programs.
In: PLDI (2011)

14. Heckerman, D.: Learning in graphical models. chap. A Tutorial on Learning with
Bayesian Networks, pp. 301–354. MIT Press, Cambridge, MA, USA (1999)

15. Hofmann, H., Cook, D., Kielion, C., Schloerke, B., Hobbs, J., Loy, A., Mosley,
L., Rockoff, D., Huang, Y., Wrolstad, D., Yin, T.: Delayed, canceled, on time,
boarding. . . flying in the USA. Journal of Computational and Graphical Statistics
20(2), 287–290 (2011)



20 Data-Driven Synthesis of Full Probabilistic Programs

16. Koller, D., McAllester, D., Pfeffer, A.: Effective bayesian inference for stochastic
programs. In: AAAI/IAAI (1997)

17. Kozlov, A.V., Koller, D.: Nonuniform dynamic discretization in hybrid networks.
In: UAI (1997)

18. Li, L., Wu, Y., Russell, S.J.: Swift: Compiled inference for probabilistic pro-
grams. Tech. Rep. UCB/EECS-2015-12, EECS Department, University of Cali-
fornia, Berkeley (Mar 2015), http://www.eecs.berkeley.edu/Pubs/TechRpts/
2015/EECS-2015-12.html

19. Lowd, D., Domingos, P.M.: Learning arithmetic circuits. In: UAI (2008)
20. Milch, B., Marthi, B., Russell, S., Sontag, D., Ong, D.L., Kolobov, A.: Blog: Prob-

abilistic models with unknown objects. In: In IJCAI. pp. 1352–1359 (2005)
21. Moral, S., Rumi, R., Salmerón, A.: Symbolic and Quantitative Approaches to Rea-

soning with Uncertainty: 6th European Conference, chap. Mixtures of Truncated
Exponentials in Hybrid Bayesian Networks, pp. 156–167. Springer Berlin Heidel-
berg, Berlin, Heidelberg (2001)

22. Nori, A.V., Hur, C.K., Rajamani, S.K., Samuel, S.: R2: An efficient mcmc sampler
for probabilistic programs. In: AAAI (July 2014)

23. Nori, A.V., Ozair, S., Rajamani, S.K., Vijaykeerthy, D.: Efficient synthesis of prob-
abilistic programs. In: PLDI (2015)

24. Perov, Y.N., Wood, F.D.: Learning probabilistic programs. CoRR abs/1407.2646
(2014), http://arxiv.org/abs/1407.2646

25. Phothilimthana, P.M., Thakur, A., Bodik, R., Dhurjati, D.: Scaling up superopti-
mization. In: ASPLOS (2016)

26. Poli, R., Graff, M., McPhee, N.F.: Free lunches for function and program induction.
In: FOGA (2009)

27. Poon, H., Domingos, P.: Sum-product networks: A new deep architecture. In: ICCV
Workshops (2011)

28. Romero, V., Rumí, R., Salmerón, A.: Learning hybrid bayesian networks using mix-
tures of truncated exponentials. International Journal of Approximate Reasoning
42(1–2), 54 – 68 (2006)

29. Schkufza, E., Sharma, R., Aiken, A.: Stochastic superoptimization. In: ASPLOS
(2013)

30. Schmidt, M., Lipson, H.: Distilling free-form natural laws from experimental data.
Science 324 (2009)

31. Shah, A., Woolf, P.J.: Python environment for bayesian learning: Inferring the
structure of bayesian networks from knowledge and data. Journal of Machine
Learning Research 10, 159–162 (2009)

32. Solar-Lezama, A., Tancau, L., Bodik, R., Seshia, S., Saraswat, V.: Combinatorial
sketching for finite programs. In: ASPLOS (2006)

33. Torlak, E., Bodik, R.: A lightweight symbolic virtual machine for solver-aided host
languages. In: PLDI (2014)

34. Udupa, A., Raghavan, A., Deshmukh, J.V., Mador-Haim, S., Martin, M.M., Alur,
R.: Transit: Specifying protocols with concolic snippets. In: PLDI (2013)

35. Wicklin, R.: An analysis of airline delays with SAS/IMLr Studio (2009)
36. Wong, M.L., Leung, K.S.: Evolutionary program induction directed by logic gram-

mars. Evol. Comput. 5(2) (Jun 1997)
37. Woodward, J.R., Bai, R.: Why evolution is not a good paradigm for program

induction: A critique of genetic programming. In: ACM/SIGEVO GEC. GEC ’09
(2009)

38. Yoo, C., Thorsson, V., Cooper, G.F.: Discovery of causal relationships in a gene-
regulation pathway from a mixture of experimental and observational dna microar-
ray data. In: Proceedings of PSB. pp. 498–509 (2002)



Data-Driven Synthesis of Full Probabilistic Programs 21

13 Appendix: Correlation of Incompatible Types

For both the simple correlation and network deconvolution approaches to depen-
dency graph generation, we need to be able to measure the correlation between
every pair of columns in a dataset. Between columns with the same type, this is
relatively straightforward, but since we must produce correlation measures for
every pair, we must take a somewhat unusual approach.

As our correlation measure for the correlation technique and our similarity
score for deconvolution, we use Spearman correlation, a measure of rank correla-
tion. This measure is suitable for quantitative, ordinal, and dichotomous nominal
data. Thus it can be applied to all numeric distributions we use, as well as to
boolean distributions, which are nominal and dichotomous. In contrast, categor-
ical random variables are nominal but may take on more than two values. Many
categorical random variables are used to represent ordinal data (data with an
implied ranking, such as a variable with values ’low’, ’medium’, and ’high’). On
the other hands, they may also be used for nominal data (data with no implied
ranking, such as a variable with values ’linen’, ’silk’, ’cotton’). Also, even when
they are used for ordinal data, the mapping from values to ranks is not provided.
In other circumstances, for comparing nominal datasets, one might use nominal-
specific measures of association, such as Cramer’s V. However, for our purposes
(and especially for the network deconvolution technique), it is important that
all measures in the similarity matrix are comparable. Since a single dataset may
include both quantitative and nominal data, using different metrics for different
variable types would be unacceptable.

We address this problem with the observation that any categorical variable
can be replaced with a set of boolean variables (one for each value of the cat-
egorical variable) to produce an equivalent model. Then, any variable that has
a direct dependence on any of the boolean variables in the altered model would
have a direct dependence on the original categorical variable. Thus, for any cate-
gorical variable withm available values, we produce columns of data to represent
m boolean variables, one for each value v, such that the boolean variable takes
value true if and only if the categorical variable produces value v. To compare
the categorical variable with another variable A, we then calculate Spearman’s
rank correlation for each boolean variable with A. Our tool takes the conserva-
tive approach of using the highest correlation produced by any of the boolean
variables as the final correlation value.

14 Appendix: Reducing the Incidence of Redundant
Branches in Synthesized Programs

In this appendix, we describe our approach to reducing redundancy in program
structures.

14.1 Design

For a concrete illustration of redundancy reduction, consider our running ex-
ample. The output program from the synthesis step, shown in Figure 13(a),
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random Boolean tired ~
BooleanDistrib(.500);

random Real skillLevel ~
if tired
then Gaussian(9.987, 7.000)
else Gaussian(10.000, 7.003);

random Real testPerformance ~
if (skillLevel < 16)
then Gaussian(46.227, 7.663)

else if (skillLevel > 18.2)
then Gaussian(46.358, 7.549)

else
UniformReal(25.300, 125.113);

(a) Before reduction

random Boolean tired ~
BooleanDistrib(.500);

random Real skillLevel ~
if tired
then Gaussian(9.987, 7.000)
else Gaussian(10.000, 7.003);

random Real testPerformance ~
if (skillLevel < 16 | skillLevel > 18.2)
then Gaussian(46.296, 7.599)

else
UniformReal(25.300, 125.113);

.

(b) After reduction

Fig. 13: When two different branches have very similar bodies, our redundancy
reduction algorithm can merge them to make the output program smaller and
more readable. Pink highlights the reduction.

contains two similar branches. Our redundancy reduction approach aligns the
distributions of the two branches (based on path conditions) and compares their
parameters. Since both parameters are similar, our approach chooses to collapse
the branches, producing the output program in Figure 13(b).

As detailed in Algorithm 1, for each pair of distribution parameters, our
algorithm makes a decision on whether they match based on how close their pa-
rameters are, but also on how much data was used to tune the parameters. If one
distribution is Boolean(.987) and the other is Boolean(.986), we are probably
willing to collapse them. In contrast, if one distribution is Boolean(.987) and
the other is Boolean(.345), and both were tuned with many rows, we probably
should not collapse them. However, if one of the distributions was tuned with
only two rows of data, we may believe the discrepancy comes only from random
chance and be willing to collapse them despite the large difference in the param-
eters. In this regard, we believe our algorithm follows much the same approach
as a human programmer attempting to simplify such a program, comparing pa-
rameters, considering how much a parameter is likely to have been affected by
chance. When redundancy reduction collapses two branches, it next tunes the
distribution parameters for the descendant distributions.

Our algorithm uses two threshold parameters, α and β. Low α values lead
the algorithm to do little reduction, while high α values produce small, highly
reduced programs. The β parameter gives users direct control over the difference
between parameter values that should always result in a reduction. For instance,
if users anticipate that they will not benefit from seeing separate branches for
Boolean(0.94) and Boolean(0.96), they should set β to 0.02 to indicate that
parameters with differences no more than 0.02 should always be collapsed, re-
gardless of the amount of data used to estimate them. Although α is the primary
determinant of how aggressively the algorithm collapses branches, users may find
manipulation of β convenient if they know some magnitude of difference is unim-
portant for their use cases.
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for each pair (b1, b2) of branches do
if not structureMatch(b1, b2) then

continue
end
match = True
for i in 0 to b1.distribs().length do

distrib1 = b1.distribs()[i] ; // the ith distribution in branch 1
distrib2 = b2.distribs()[i]
/* each distribution is associated with a rows value, the number of

dataset rows used to tune its parameters */
minNumRows = min(distrib1.rows, distrib2.rows)
/* if one of these distributions has params based on very little data,

expect it may reflect randomness rather than ground truth */
threshold = α/(minNumRows0.7) - β
for j in 0 to distrib1.length do

param1 = distrib1[j] ; // the jth param of distribution 1
param2 = distrib2[j]
match = match ∧ (| param1 - param2 | < threshold)

end
end
if match then

collapse(b1, b2)
end

end
Algorithm 1: A redundancy reduction algorithm for making synthesized pro-
grams more human-readable. The α and β parameters can be adjusted by the
user to control the size and readability of the output program.

Applying this algorithm after the synthesis process offers both advantages
and disadvantages. The primary and obvious disadvantage is that by reducing
redundancy after SA, we give up the opportunity to reduce the SA time by run-
ning on a smaller program structure. However, we believe the advantages may
make up for the reduction in synthesis time. With this approach, we allow SA
to use all the distinctions it can use to obtain high accuracy, and only eliminate
distinctions from the learned program after the fact, when it is clear they have
not offered significant advantages. At this point in the process, redundancy re-
duction has access to all the information that has been learned during the earlier
synthesis stages, and can make very informed decisions about which conditions
to combine. It receives more information than the dependency graph genera-
tion stage receives. Also, as discussed in Section 7, because this modification is
applied as a post-processing step, the user can quickly and easily explore differ-
ent readability levels, tuning the amount of redundancy reduction to his or her
needs.

We also feel this approach may be a more natural way to reduce program
sizes, compared to aggressive dependency graph approaches like Network De-
convolution. This is because the individual branch collapse actions are intuitive
to human users and could even be presented to the programmer for approval.
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14.2 Future Work for Redundancy Reduction

Although we are satisfied with the outputs of the current redundancy reduction
technique, we are also interested in pursuing a more principled approach. The
current algorithm is excellent for allowing users to explore quickly, since it is fast
and offers simple tuning parameters. It is also a clean way to handle many dif-
ferent distribution types with a unified algorithm. However, we see redundancy
reduction as a natural place to apply methods for identifying whether a differ-
ence is statistically significant. Rather than use our magnitude of difference vs.
magnitude of data heuristics, why not use real statistical hypothesis testing?

We see one potential drawback to this approach, which is that our redun-
dancy reduction approach is intended to increase readability rather than reduce
overfitting. We want users to be able to remove detail even when it is not the
result of random chance or overfitting. In short, users should be able to elim-
inate a distinction even if it is statistically significant. We intentionally placed
the redundancy reduction stage at the end so that users can quickly explore var-
ious levels of program size and readability, tuning programs to their individual
needs. If we transition to a more principled approach, we would want to find a
way to maintain this flexibility and the current level of user control. In future,
we expect to explore this direction.

15 Appendix: Examples of Synthesized Programs

To give a sense of how readable DaPPer’s output programs are, we include
programs DaPPer produces for the two running examples we use throughout
the paper, ‘burglary’ (Figure 14) and ‘students’ (Figure 15).
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random Boolean Burglary ~
BooleanDistrib(0.001);

random Boolean Earthquake ~
BooleanDistrib(0.002);

random Boolean Alarm ~
if Burglary
then
if Earthquake
then BooleanDistrib(0.95)
else BooleanDistrib(0.94)

else
if Earthquake
then BooleanDistrib(0.29)
else BooleanDistrib(0.001);

random Boolean JohnCalls ~
if Alarm
then BooleanDistrib(0.9)
else BooleanDistrib(0.05);

random Boolean MaryCalls ~
if Alarm
then BooleanDistrib(0.7)
else BooleanDistrib(0.01);

(a) The ground truth program for our
‘burglary’ benchmark.

random Boolean Burglary ~
BooleanDistrib(0.0008);

random Boolean Earthquake ~
BooleanDistrib(0.0018);

random Boolean Alarm ~
if Burglary
then

BooleanDistrib(1.0)

else
if Earthquake
then BooleanDistrib(0.33333333)
else BooleanDistrib(0.00110286);

random Boolean JohnCalls ~
if Alarm
then BooleanDistrib(0.96)
else BooleanDistrib(0.049824561);

random Boolean MaryCalls ~
if Alarm
then BooleanDistrib(0.76)
else BooleanDistrib(0.008621553);

(b) The program DaPPer synthesizes for the
‘burglary’ benchmark.

Fig. 14: A side-by-side comparison of the ground truth ‘burglary’ program and
the program DaPPer synthesizes for the ‘burglary’ dataset. This program was
synthesized with the Complete dependency graph, then processed with redun-
dancy reduction.
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random Boolean tired ~
BooleanDistrib(.5);

random Real skillLevel ~
Gaussian(10, 7);

random Real testPerformance ~
if skillLevel > 13.0
then
if tired
then Gaussian(70, 15)
else Gaussian(95, 5)

else
if tired
then Gaussian(30, 15)
else Gaussian(70, 5);

(a) The ground truth program for
our ‘students’ benchmark.

random Boolean tired ~
BooleanDistrib(0.5009);

random Real skillLevel ~
Gaussian(9.947325,6.981384);

random Real testPerformance ~
if tired
then
if (skillLevel > 13.0266062)
then Gaussian(70.079381,13.760027)
else Gaussian(30.156086,20.582181)

else
if (skillLevel < 12.5535461)
then Gaussian(70.005204,5.063899)
else UniformReal(64.2285,104.1120);

(b) The program DaPPer synthesizes for the
‘students’ benchmark.

Fig. 15: A side-by-side comparison of the ground truth ‘students’ program and a
program DaPPer synthesizes for the ‘students’ dataset. We use colors to highlight
the bodies of corresponding branches. This program was synthesized with the
Correlation dependency graph and did not require redundancy reduction.


