'.)

Check for
Updates

Fast Direct Manipulation Programming with
Patch-Reconciliation Correspondence

PARKER ZIEGLER, University of California, Berkeley, USA
JUSTIN LUBIN, University of California, Berkeley, USA
SARAH E. CHASINS, University of California, Berkeley, USA

Direct manipulation programming gives users a way to write programs without directly writing code, by
using the familiar GUI-style interactions they know from direct manipulation interfaces. To date, direct
manipulation programming systems have relied on two core components: (1) a patch component, which
modifies the program based on a GUI interaction, and (2) a forward evaluator, which executes the modified
program to produce an updated program output. This architecture has worked for developing short-running
programs—i.e., programs that reliably execute in <1 second—generating outputs such as SVG and HTML
documents. However, direct manipulation programming has not yet been applied to long-running programs
(e.g., data visualization, mapping), perhaps because executing such programs in response to every GUI
interaction would mean crossing outside of interactive speeds. We propose extending direct manipulation
programming to long-running programs by pairing a standard patch component (patch) with a corresponding
reconciliation component (recon). recon directly updates the program output in response to a GUI interaction,
obviating the need for forward evaluation.

We introduce corresponding patch and recon procedures for the domain of geospatial data visualization
and prove them sound—that is, we show that the output produced by recon is identical to the output produced
by forward-evaluating a patch-modified program. recon can operate both incrementally and in parallel with
patch. Our implementation of our patch-recon instantiation achieves a 2.92x median reduction in interface
latency compared to forward evaluation on a suite of real-world geospatial visualization tasks. Looking
forward, our results suggest that patch-reconciliation correspondence offers a promising pathway for extending
direct manipulation programming to domains involving large-scale computation.

CCS Concepts: « Human-centered computing — User interface programming; « Software and its engi-
neering — Graphical user interface languages; Integrated and visual development environments.

Additional Key Words and Phrases: direct manipulation, direct manipulation programming, reconciliation,
patch-reconciliation correspondence, cartokit, geospatial data

ACM Reference Format:

Parker Ziegler, Justin Lubin, and Sarah E. Chasins. 2025. Fast Direct Manipulation Programming with Patch-
Reconciliation Correspondence. Proc. ACM Program. Lang. 9, PLDI, Article 175 (June 2025), 26 pages. https:
//doi.org/10.1145/3729278

1 Introduction

Direct manipulation programming systems integrate the point-click-modify interactions of graphi-
cal user interfaces (GUIs) with the flexibility and expressiveness of programming. Typically con-
trasted with command-line interfaces, direct manipulation interfaces [57] let users “act on displayed
objects of interest using physical, incremental, and reversible actions whose effects are immediately

Authors’ Contact Information: Parker Ziegler, peziegler@cs.berkeley.edu, University of California, Berkeley, Berkeley,
California, USA; Justin Lubin, justinlubin@berkeley.edu, University of California, Berkeley, Berkeley, California, USA; Sarah
E. Chasins, schasins@cs.berkeley.edu, University of California, Berkeley, Berkeley, California, USA.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).

ACM 2475-1421/2025/6-ART175

https://doi.org/10.1145/3729278

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 175. Publication date: June 2025.

HTTPS://ORCID.ORG/0000-0001-9462-2123
HTTPS://ORCID.ORG/0000-0003-2311-1873
HTTPS://ORCID.ORG/0000-0003-0557-3580
https://doi.org/10.1145/3729278
https://doi.org/10.1145/3729278
https://orcid.org/0000-0001-9462-2123
https://orcid.org/0000-0003-2311-1873
https://orcid.org/0000-0003-0557-3580
https://orcid.org/0000-0003-0557-3580
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3729278
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3729278&domain=pdf&date_stamp=2025-06-13

175:2 Parker Ziegler, Justin Lubin, and Sarah E. Chasins

visible on the screen [56].” In the context of programming, direct manipulation typically means
displaying an always-visible program and an always-visible program output. In addition to textual
edits, the programmer can interact with graphical interface elements (e.g., menus, buttons, drop-
downs, color pickers). As in other direct manipulation settings, the effects of these interactions
should be “immediately visible on the screen.” In contrast to non-programming settings, this means
the user should see effects on two artifacts: the program and the program output.

A key challenge in the design of direct manipulation programming systems is the synchro-
nization of program and output, often formalized as a “round-tripping” property [22]. Several
existing systems (e.g., Sketch-n-Sketch [38], BIOOP [64]) maintain program-output synchrony via a
bidirectional semantics, which introduces a backward evaluation relation defining how GUI actions
propagate to the source program. Synchrony is preserved by subsequently forward-evaluating the
updated program to produce the updated output. Implicit in this architecture is the assumption
that this loop—backward evaluation followed by forward evaluation—is fast enough to maintain
interactive speeds in a GUIL

While this assumption may hold for the domains these systems have explored to date (SVG
[14, 29, 30], HTML documents [38, 64]), some tasks are longer-running—e.g., tasks involving large-
scale computation over data. Forward evaluation in these contexts can be extremely expensive.
Consider, for example, a simple program for rendering a data visualization such as a scatterplot
or choropleth map. If a programmer manipulates display attributes of the visualization’s marks,
such as the color scheme or stroke width, forward evaluation will involve re-parsing and storing
the underlying data in memory, re-computing scales to map data points to onscreen values, and
re-drawing graphical marks. If the data happens to be stored remotely in a database or at an API
endpoint, forward evaluation introduces the additional penalty of re-fetching over the network on
every execution. If a given GUI action only affects a small subset of the data, forward evaluation
will waste resources re-rendering many unaffected marks.

Given these challenges, we ask: How can we avoid the performance cost of forward evaluation
while ensuring that the program and output remain in agreement? This paper aims to present
an answer in the form of patch-reconciliation correspondence, a strategy for supporting direct
manipulation programming that avoids forward-evaluating the updated program in response to
every direct manipulation interaction. We instantiate patch-reconciliation correspondence in a
direct manipulation programming system for data-intensive geospatial visualization.

Key Insight. Forward evaluation is a sensible synchronization mechanism because it guaran-
tees exact program-output correspondence by construction. In lieu of running sophisticated and
computationally expensive program analyses to check this property, we can assure it by simply
evaluating the program. The problem, however, is that forward evaluation is too coarse; for a given
output modification, it may repeat a lot of work that is not needed for synchronization. In fact,
many output modifications can be distilled into very small transformations on the current program
output. We introduce an approach for implementing a direct manipulation programming system by
combining (1) a standard patch process for updating a program with (2) a reconciliation (recon)
process for updating a program output. Importantly, we use patch and recon not only to prove
our system sound, but also to implement our instantiation. By showing that patch and recon are
conjugate—that is, that patching and then evaluating a program produces the same value as directly
reconciling the program output—we eliminate the need for forward evaluation altogether; instead,
we can rely exclusively on parallel applications of patch and recon.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 175. Publication date: June 2025.

Fast Direct Manipulation Programming with Patch-Reconciliation Correspondence 175:3

Forward Evaluation patch-recon

GUI Interaction GUI Interaction

= =

Triggers

Program ;
Dispatches

Update diff (&)

patch patch recon
Applies Program Applies Program Reconciles
Transformation Transformation Output
Program Output Program Output

Forward Evaluates

= it = it

Fig. 1. Comparing direct manipulation programming approaches. In systems that use Forward
Evaluation (including all prior direct manipulation programming systems), (A) a GUI interaction triggers
a program update, (B) a patch function (e.g., backwards evaluation [38], fusion [66]) applies a synthesized
program transformation to the program, and (C) the system forward-evaluates the program to produce
the updated output. In contrast, our system uses a patch-recon approach, in which (A) a GUI interaction
dispatches a diff (6) and (B) patch and recon operate in parallel on this same diff. patch generates an
updated program while recon generates a corresponding updated output. Proving correspondence between
patch and recon is key to enabling this approach.

Contributions. This paper contributes:

(1) A strategy for program-output synchronization in direct manipulation programming systems,
patch-reconciliation correspondence, that obviates the need for forward evaluation (Section 3).

(2) An instantiation of reconciliation (recon) for the domain of data-intensive geospatial visual-
ization (Section 4). We prove reconciliation sound and demonstrate its equivalence to patch
followed by forward evaluation.

(3) An implementation of this instantiation, and an evaluation on (1) the 80 reconciliation events
required to reproduce six real-world maps published by national newsrooms, and (2) organic,
in situ use of the system over a 30-day period (Section 6). Performance evaluation reveals that
our patch-reconciliation approach can offer performance benefits for direct manipulation
programming; we observed a 2.92X median reduction in interface latency and a 28.06x
median speedup on code execution time compared to forward evaluation.

2 Overview

To demonstrate the key ideas of our patch-reconciliation approach (hereafter patch-recon) and
its effect on performance in a direct manipulation programming system, we consider a concrete
geospatial visualization example. Note this is just one instantiation of the technique; we show
in Section 7.1 that patch-recon applies to direct manipulation programming systems targeting
general-purpose programming languages, including those built on the A-calculus with general
recursion.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 175. Publication date: June 2025.

175:4 Parker Ziegler, Justin Lubin, and Sarah E. Chasins

For now, suppose we are programming a scrollable, zoomable map showing wildfires in the
United States using data from the National Interagency Fire Center’s API'. We want the map to
reveal where fires occurred (by county), the acreage each fire burned, and the fire’s root cause
(e.g., human activity, natural occurrence). We will assume that we are working within a direct
manipulation environment in which a series of layers are placed atop a base map layer in order to
create a visualization, as is standard for geospatial analyses.

patch and recon. To begin our exploration of patch and recon, we focus on a single interaction
in our direct manipulation programming process. To set the stage, suppose the direct manipulation
system has already fetched the geospatial data for wildfire perimeters and county boundaries in the
United States. Suppose further that we have already added two visual layers to the output map in
our system: (1) a layer of polygons whose boundaries are defined by the data for recorded wildfires
and (2) a layer of polygons whose boundaries are defined by the data for U.S. counties.

Now we perform a GUI interaction to transform the wildfires layer into a proportional symbol
layer. Rather than rendering polygons that represent the extent of each wildfire, a proportional
symbol layer renders circles positioned at the geographic center of each wildfire; the size of the circle
is proportional to the total acreage burned. (The bottom-right map of Figure 2 shows an example of
a proportional symbol layer.) Executing this transformation is complex and expensive; the system
needs to (1) iterate over all wildfire polygons in the dataset, (2) compute their geographic centers,
(3) compute a scale function mapping the acreage_burned property to circle sizes, (4) evaluate
that scale on all wildfires in the dataset, and (5) render the resulting marks to the screen.

Under patch-recon, this GUI interaction triggers two parallel operations:

(1) The patch operation applies a small program transformation, which we call a diff, to the
system’s current program. In our example, this involves generating—though not executing—
the code for steps 1 through 5 above.

(2) The recon operation interprets this same diff and applies its effects to the output map. In
our example, this involves computing steps 1 through 5 above.

It is critical to note that although these operations share a correspondence—patch updates the
program while recon models the effect of that update on the output—they execute independently.
Compare this to forward evaluation, in which the system must wait for patch to perform the
program update before evaluating it to a new output map. Figure 2 provides an illustrated example
of patch-recon for this interaction.

Beyond parallelization, patch-recon carries additional benefits in this scenario. Because the
wildfires data is already stored in memory, the computation to transform the polygon layer to
a proportional symbol layer can begin immediately without re-fetching data from the API. Ad-
ditionally, because the computation only affects the wildfires layer, the system does not need to
modify the program representation or rendered marks of the counties layer. Compare this again to
forward evaluation, in which the system would re-fetch, re-parse, and reload the wildfires dataset
from its API endpoint. Additionally, because forward evaluation does not reuse results from prior
executions, the system must re-render the unmodified counties layer. This carries a separate cost
of re-fetching, re-parsing, and reloading the counties data, in addition to re-instantiating the map.

This interaction alone demonstrates the core problem that reconciliation addresses. As we
continue to make small output modifications (e.g., mapping the color of each circle to the dataset’s
cause property, reducing opacity to increase the visibility of overlapping circles), forward evaluation
repeats all prior computation. Moreover, program update and program evaluation must always
occur sequentially. In contrast, patch-recon operates incrementally and in parallel. Each new

Thttps://data-nifc.opendata.arcgis.com/

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 175. Publication date: June 2025.

https://data-nifc.opendata.arcgis.com/

Fast Direct Manipulation Programming with Patch-Reconciliation Correspondence 175:5

Program (P) Program (P’)
patch
diff (8) EE%
transformLayer(s, transform)
Ly
L5 recon
Map (V) Map (V)

Fig. 2. Our patch-recon approach applied to a geospatial visualization example. (A) A GUI interaction
triggers (1) the patch operation, supplying a diff and our program, P, as inputs, and (2) the recon operation,
supplying the same diff and our map, V, as inputs. (B) patch applies the diff to produce the updated
program, P’, while recon interprets the diff to produce the updated map, V’. The program is never forward
evaluated to produce the updated map, which visualizes wildfires using a proportional symbol layer.

output modification produces only a small diff from the prior program, and the patch and recon
functions operate on this shared diff to synchronize the program and output, respectively.

Why not cache data? If data fetching, parsing, and storage is a primary bottleneck for forward
evaluation of data-intensive programs, why not just cache the data? Indeed, as described in the
example above, caching data in memory is a key factor in making our reconciliation implementation
efficient. However, while this strategy would amortize the costs of data access, it would not eliminate
all redundant computation performed by forward evaluation. To see why, let us extend our example
above to a second GUI interaction.

Let us say the programmer performs a GUI interaction to map each circle’s color to its correspond-
ing wildfire’s cause property, allowing them to identify which wildfires were human-caused versus
naturally occurring. With caching in place, forward evaluation could skip re-fetching and re-parsing
the data; however, we would still incur the cost of translating cached data into an efficient data
structure for rendering. In our setting, this process—known as tiling—can be extremely expensive,
particularly in a resource-constrained environment like a web browser. Worse yet, we pay the
penalty for tiling on both the wildfires layer and the counties layer, even though the latter did not
change as part of the output update. In contrast, reconciliation can sidestep tiling by modifying
rendered marks in place, scoping the modification to the wildfires layer. This technique involves
altering and re-running only the shader function that styles marks, which is comparatively cheap.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 175. Publication date: June 2025.

175:6 Parker Ziegler, Justin Lubin, and Sarah E. Chasins

If caching at the data level is not sufficient, we may be tempted to lower our caching approach to
an even finer granularity, such as the layer or mark level. In fact, this is one way of viewing what
reconciliation does! As a system developer adds more caching, they essentially start implementing
reconciliation in an ad hoc manner. The drawback of an ad hoc caching approach, however, is the
lack of a soundness guarantee, which is a core contribution of this work. For a deeper discussion of
how a patch-recon approach differs from traditional caching approaches, see Section 7.4.

patch-recon Correspondence. Prior direct manipulation programming systems have relied on
forward evaluation to guarantee program-output agreement by construction. Since a language
implementation is already available, reusing this machinery is a straightforward choice. But when
forward evaluation is too expensive to achieve interactive speeds, we need some other mechanism to
synchronize the program and output. We propose the pairing of patch and recon as an alternative
strategy to achieve program-output agreement without the associated performance cost.

The key to our approach is a proof of the correspondence between these two functions, which we
formalize in a soundness theorem (Sections 3 and 4). Absent soundness, we have no guarantee that
the effects of recon on the output are captured by the effects of patch on the program, and vice versa.
In this context, every GUI interaction would have the potential to lead to divergence of the program
and output. Consider our working example above. Imagine that the transition to a proportional
symbol layer succeeds on the recon side, but patch applies an incorrect corresponding program
transformation. If we attempted to execute the generated program, we would get either a different
output map or, in a pathological case, a runtime error. As we continue to make modifications within
the system, the problem would only compound. For example, because patch would apply successive
program updates assuming the transition was already encoded in the program, it could introduce
code that modifies non-existent layer properties, performs impossible data transformations, or tries
to execute a myriad of other degenerate actions. As we will see in the next section, the solution to
these problems is soundness, which guarantees that the output produced by recon is identical to
the output produced by forward evaluating the patched program.

3 Problem Statement

In this section, we formalize the constraints on the reconciliation function and establish the
foundations for soundness.

Definition 3.1. For purposes, a language £ has:

(1) A set of programs Prog ,.

(2) A set of values Valz.

(3) A semantics eval : Prog , — Val.

(4) A set of diffs Diff .

(5) A syntactic diffing operation patch : Diffs ; X Prog , — Prog ,.

We omit the £ subscript when clear from context.

Definition 3.2 (Problem Statement). A reconciliation function is a function
recon : Diff X Val — Val
such that, for any diff §,
eval(patch(4, P)) = recon(d, eval(P)).

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 175. Publication date: June 2025.

Fast Direct Manipulation Programming with Patch-Reconciliation Correspondence 175:7

Graphically, the following square must commute.

patch(f,-)

recon(d, -)

4 Reconciliation for Direct Manipulation Programming

We now instantiate our problem statement in the context of geospatial visualization. In addition to
our discussion of how patch-recon can apply to general-purpose programming languages with
recursion (Section 7.1), we will also later discuss how this particular instantiation is representative
of many existing languages for tasks that are amenable to direct manipulation (Section 7.2).

4.1 Syntax, Semantics, and Patches

In the following sections, we define the syntax and semantics of language L. as well as a notion
of patches, following the structure of Definition 3.1.

Programs. Figure 3 defines the set of programs, Prog _ , in the language. Intuitively, a program
p € Prog , comprises a dictionary of map layer definitions.

Values. The set of values, Val ¢, , in the language is the set of maps, as defined in Figure 3. A
map M comprises a set of graphical marks. Each mark represents a graphical depiction of a single
data point in a dataset and consists of a mark type (mt), associated layer id, associated datapoint,
and associated mapping of channels (attributes like fill-color or stroke-width) to functions that
render these channels.

Semantics. Programs in our language L. are dictionaries of map layer definitions; thus, to
introduce the semantics eval of our language Lk, we first define layer evaluation evalLayer
(Figure 4, left). Intuitively, layer evaluation takes a layer £ € P and evaluates it to a set of rendered
marks. As part of this process, a function, getMT, interprets a layer’s type, T, and returns the
corresponding mark type, mt, for the set of rendered marks. We can then define map evaluation
eval (Figure 4, right), which evaluates all layers to the set of all marks.

Full program evaluation is quite expensive in our context. Given the large sizes of geospatial
datasets (typically 10-500 MB, consisting of tens of thousands to hundreds of thousands of features),
the geometric complexity of rendered marks in a layer, and the linear time complexity of evaluation
with respect to the number of data points across all layers, avoiding full program evaluation where
possible is critical for performance.

Diffs. Our definition of diffs d s, is included in Figure 3. We briefly describe each diff below.

(1) setChannel(id, C, fn) includes a layer id, a channel (C) to add or modify on the associated
layer’s style (S) and a function (fn) mapping each datum (d) in the layer to a stylistic value
for the supplied channel.

(2) removeChannel(id, C) includes a layer id and a channel (C) to remove from the associated
layer’s style (S).

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 175. Publication date: June 2025.

175:8 Parker Ziegler, Justin Lubin, and Sarah E. Chasins

Prog P == {id — ¢}
Layers ¢ := (type : T, data : D, style : S)
Layer Types T ::= Point | Line | Polygon | Choropleth | Proportional Symbol | Dot Density
Data D == [d;,...,dN] V2!
Channel C := fill-color | stroke-width | thresholds | classifier | min-radius | dot-value | ...
Style S ::= {C — fn}

Maps M ::= {my, .. .,mN}N20
Mark m ::= mark(mt, id, d, S)
Mark type mt ::= Point | Line | Polygon

Diff § ::= setChannel(id, C, fn)
| removeChannel(id, C)
| addLayer(id, ¢)
| removelayer(id)
|

transformLayer(id, transform)

Fig. 3. The definition of programs in L k. d refers to an individual datum within a layer. id refers to a
layer’s unique string identifier. fn is an abstract function that takes a layer datum d as input and returns a
corresponding stylistic value for a given channel.

EvAL-LAYER
mt = getMT(T) Evar-Mar

evallayer(id,(T, D, S)) = {mark(mt,id. d.S) | d € D} eval(P) = U evalLayer(id, P[id])
ideP

Fig. 4. Forward evaluation for L.

(3) addLayer(id, ¢) includes a fresh layer id and a fresh layer definition (¢).

(4) removelayer(id) includes an existing layer id to use for targeted layer removal.

(5) transformLayer(id, transform) includes a layer id and a transform function ({(T, D, S) —
(T’,D’,S")) to apply to the associated layer. transform operates in practice by mapping a
subroutine, transform; : (T, d,S) — (T’,d’,S’), over alld € D.

Our formalism assumes a validity constraint on diffs, namely that (1) id is guaranteed to exist
in P for setChannel, removeChannel, removeLayer, and transformLayer and (2) id is guaranteed to
not exist in P for addLayer. Our implementation (Section 5) enforces this constraint.

Patch. The patch,, function applies a diff §r,, to an existing p € Prog . to yield a new
p’ € Prog ;. Intuitively, patch modifies the minimal portion of the program AST based on the
value of the diff §. We define patch , in Figure 5.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 175. Publication date: June 2025.

Fast Direct Manipulation Programming with Patch-Reconciliation Correspondence 175:9

PaTcH/SET-CHANNEL
P(id) = (T, D, S)

patch(setChannel(id, C, fn), P) = [id + (T, D, [C + fn]S)|P

PaTcH/REMOVE-CHANNEL
P(id) = (T, D, S)

patch(removeChannel(id, C), P) = [id — (T, D,S \ {C})]P

PaTcH/ADD-LAYER PAaTCcH/REMOVE-LAYER

patch(addLayer(id, (T, D, S)), P) = [id + (T, D, S)|P patch(removelayer(id),P) = P\ {id}

PaTcH/TRANSFORM-LAYER
P(id) = (T, D, S)
transform(T,D,S) = (T’,D’,S’)

patch(transformLayer(id, transform), P) = [id — (T’,D’,S’)]P

Fig. 5. Our implementation of patch for Lk, a syntactic program update.

RECON/SET-CHANNEL
M’ = {mark(mt, id, d, [C + fn]S) | mark(mt, id, d,S) € M}
M = {mark(mt,id’, d,S) | mark(mt,id’,d,S) € M,id’ # id}

recon(setChannel(id, C, fn), M) = M’ U M"”

RECON/REMOVE-CHANNEL

M’ = {mark(mt,id,d, S\ {C}) | mark(mt, id, d,S) € M} RECON/ADD-LAYER
M" = {mark(mt,id’,d,S) | mark(mt,id’,d,S) € M,id" # id} evallayer(?f) = M’
recon(removeChannel(id, C), M) = M’ U M"’ recon(addLayer(f, M)) = MU M’

RECON/REMOVE-LAYER
M’ = {mark(mt,id’,d,S) | mark(mt,id’,d,S) € M,id" # id}

recon(removelayer(id), M) = M’

RECON/TRANSFORM-LAYER
M’ = {mark(getMT(T’),id,d’, ") | mark(mt, id, d,S) € M, transform; (getMT ™! (mt),d,s) = T’,d’, 8’}
M = {mark(mt,id’,d,S) | mark(mt,id’,d,S) € M,id" # id}
recon(transformLayer(id, transform), m) = M’ U M"’

Fig. 6. Our implementation of recon for L i, a semantic value update.

4.2 Reconciliation Function

With our framework in place, we now define our reconciliation function recony,, (Figure 6).
recon s applies a diff 5, to an existing M € Valp_ to yield a new M’ € Val_, . Intuitively,
recon modifies the minimal number of marks on the map based on the value of the diff é.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 175. Publication date: June 2025.

175:10 Parker Ziegler, Justin Lubin, and Sarah E. Chasins

patch-recon Correspondence by Example. Imagine we have the following program containing
two layers, a Point layer and a Choropleth layer.?

P = {id; ¥ (Point, Dy, S1), id2 — (Choropleth, Dy, S;) }
When evaluated by eval , , this program yields a set of marks:
M = {mark(Point, id;,d,S;) | d € D1} U {mark(Polygon,id,,d,S,) | d € D,}
Now, we trigger a GUI interaction to remove the stroke-width channel from just the Point layer.
This produces the following diff:
d = removeChannel(id;, stroke-width)

patch, and recon,, commence operation on this diff in parallel. patch (instantiated
below) identifies the associated layer, ¢, in the program via dictionary lookup and removes the
stroke-width channel from S;. Notice that the Choropleth layer remains untouched.

PaTcH/REMOVE-CHANNEL

P(ld]) = (Point, D1,51>
patch(removeChannel(idy, stroke-width), P) = [id; — (Point, Dy, S; \ {stroke-width})]P

Meanwhile, recon , (instantiated below) identifies the current set of associated marks by id
({mark(idy, Point,d,S;) | d € D;}) and modifies the marks to remove the stroke-width channel.
Notice again that marks associated with the Choropleth layer (idz) remain unchanged.
RECON/REMOVE-CHANNEL
M’ = {mark(Point, id, d, S; \ {stroke-width}) | mark(Point, idy,d, S;) € M}
M" = {mark(Polygon, id,, d, S;) | mark(Polygon,id,, d, S;) € M, id; # ids}

recon(removeChannel(idy, stroke-width), M) = M" U M"

The following theorem establishes that the new set of marks produced by recon ¢, —that is, the
new map—is equivalent to the map that would be produced by eval’ing the patch’ed program
(Definition 3.1). For brevity, we provide a proof of this theorem in Appendix A.

THEOREM 4.1 (SOUNDNESS). recony,, is a reconciliation function.

5 Implementation

We implement L., eval ¢, , patch g, and recon g, described in Section 4 in a direct manipula-
tion programming environment for geospatial analysis and visualization, cartokit. cartokit is
implemented in 9,526 lines of TypeScript and Svelte, and its source code is publicly available at
https://github.com/parkerziegler/cartokit. A deployment of the cartokit programming environ-
ment is available at https://alpha.cartokit.dev.

Our implementations of patch and recon account for 1,713 lines (~18%) of the codebase. Much
of this code is devoted to specializing the same core logic for all visualization channels (currently
21) our system supports. In fact, patch-recon for a single diff tends to be quite compact in
our setting. For example, the entirety of patch-recon for updating the point-size channel (i.e.,
§ = setChannel(id, point-size, n)), is implemented in only 14 lines of TypeScript. A small minority
are much larger. In particular, patch-recon for § = transformLayer(id, transform), which handles
advanced cases like the example described in Section 2, constitutes 1,020 of the overall 1,713 lines
(=59.5%); most of this code implements specific geospatial data transformation algorithms.

2A choropleth layer associates a geographic region with a color based on the value of a particular data property for that
region. See Figure 7 for an example.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 175. Publication date: June 2025.

https://github.com/parkerziegler/cartokit
https://alpha.cartokit.dev

Fast Direct Manipulation Programming with Patch-Reconciliation Correspondence 175:11

Ve i Sparron ©

Fig. 7. An example map from our benchmark suite (left) alongside the cartokit reproduction (right).
This example choropleth map, taken from “Bird populations are declining. Some are in your neighborhood”
published in The Washington Post, shows the change in American Crow abundance across the United States
from 2012-2022. The benchmark workflow associated with this map includes 17 recon-triggering actions.

6 Evaluation

To assess the performance impacts of reconciliation on direct manipulation programming, we
designed our empirical evaluation around two core research questions:

RQ1. How does reconciliation affect performance relative to forward evaluation, if at all?
RQ1a. Does reconciliation result in greater speedups for longer-running computations?
RQ2. How fast is reconciliation when updating real-world outputs with real-world datasets?

We investigated these questions through two studies using our instantiation of the patch-recon
approach in cartokit. In Study 1, we addressed RQ1 and RQ1a by measuring and comparing
reconciliation’s performance against forward evaluation while reproducing six maps published
by two national newsrooms: The Washington Post® and The New York Times*. In Study 2, we
answered RQ2 by instrumenting cartokit’s production deployment to capture reconciliation’s
run time performance in situ on organic, real-world use.

6.1 Study 1: Comparing Reconciliation vs. Forward Evaluation Performance on Six
Real-World Benchmarks

6.1.1 Benchmark Suite. We selected six maps published by two national newsrooms as targets for
replication using the following criteria:

(1) Data availability. GeoJSON® data for the map had to be provided, publicly available, or
computable from the data sources listed with the map.
(2) Recency. The map had to have been published after January 1, 2023.

Table 1 includes details of each benchmark map. Figure 7 shows an example of one of our benchmark
maps alongside its reproduction in cartokit.

6.1.2 Setup. We used v0.5.2 of cartokit to reproduce each map in our benchmark suite, generating
one workflow per map. Each workflow is composed of a sequence of actions, which correspond to
GUI interactions that trigger reconciliation (in the patch-recon condition) or forward evaluation
(in the forward evaluation condition). Each action results in both an updated output and an updated
L. program; cartokit additionally compiles the updated L. program to JavaScript for display

Shttps://www.washingtonpost.com

4https://www.nytimes.com/spotlight/graphics

5GeoJSON is a standard interchange format used to encode geospatial data for web applications. The GeoJSON specification
is available at: https://datatracker.ietf.org/doc/html/rfc7946

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 175. Publication date: June 2025.

https://www.washingtonpost.com
https://www.nytimes.com/spotlight/graphics
https://datatracker.ietf.org/doc/html/rfc7946

175:12 Parker Ziegler, Justin Lubin, and Sarah E. Chasins

Table 1. Benchmark suite. LOC reports the number of lines of code in the final JavaScript program generated
by cartokit for the given benchmark. Action # reports the number of recon-triggering actions required to
reach the target map. Data (MB) shows the size of the map’s datasets, in megabytes.

ID Article Title Newsroom LOC Action# Data(MB)
1 “Maps of the April 2024 Total The New York Times 54 13 8.2
Solar Eclipse”
2 “You're not crazy. Spring is ~ The Washington Post 42 13 127

getting earlier. Find out how
it’s changed in your town.

3 “Winter is warming almost ~ The Washington Post 40 11 2494
everywhere. See how it’s
changed in your town”

4 “A boat went dark. Finding it The Washington Post 47 12 2.7
could help save the world’s
fish”

5 “Bird populations are The Washington Post 60 17 7
declining. Some are in your
neighborhood.”

6 “Will global warming make The Washington Post 47 14 15
temperature less deadly?”

Median 47 13 11.6

to the user. When run in order, the sequence of actions in a workflow produces the final target
map and program for the workflow. Across our six workflows, there was a total of 80 unique
actions. We automated our workflows as Playwright [41] tests, which are publicly available at
https://github.com/parkerziegler/cartokit/tree/v0.5.2/tests/workflows.

We executed both reconciliation and forward evaluation for each of the 80 actions in Google
Chrome 130.0.6723.70 on a laptop running macOS 14.6.1 with a 2.3 GHz Quad-Core Intel Core i7
processor and 32GB RAM. To capture reconciliation execution times, we instrumented the source
code of cartokit’s reconciliation algorithm with the browser’s native Performance API [17]. To
capture forward evaluation execution times, we instrumented cartokit-generated programs with
identical calls to the browser Performance API For each action, we measured 10 executions of the
corresponding reconciliation event and 10 forward evaluations of the corresponding program.

Importantly, measuring only code execution time does not give the full picture of how long it
takes for a new output to display. Given that we want to achieve interactive speeds to facilitate
direct manipulation programming, we also measure when the user interface reaches a quiescent
state after each reconciliation event (in the patch-recon condition) or each forward evaluation
(in the forward evaluation condition). We call this metric time-to-quiescent (hereafter TTQ). We
used the idle event of cartokit’s map rendering library, MapLibre GL JS [35], as the endpoint for
TTQ measurement. The idle event is fired when all currently requested tiles (that is, data) have
rendered on the map.

6.1.3 Results. Reconciliation outperformed forward evaluation, yielding a median speedup
of 2.92x for TTQ and 28.06X% for code execution time.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 175. Publication date: June 2025.

https://github.com/parkerziegler/cartokit/tree/v0.5.2/tests/workflows

Fast Direct Manipulation Programming with Patch-Reconciliation Correspondence 175:13

4 Reconciliation TTQ (ms) 4 Reconciliation (ms)
Forward Evaluation better (0/80) Forward Evaluation better (0/80)
10k | 1004 .
. ® .
e g
N 10|
oV
K :
] LN
® o oo
® 1 9o
- ' -
o 5% M,
-
K3
Reconciliation better (80/80) | Reconciliation better (80/80)
100 T T T T T T T T T T T T T T T T 01 T T T T T TTTT T T T T T TTTT T T T T TTTT
100 Tk 10k 01 1 10 100
Forward Evaluation TTQ (ms) > Forward Evaluation (ms) >
Time-to-Quiescent (TTQ) Code Execution

Fig. 8. Comparing forward evaluation and reconciliation across all benchmarks. (A) shows the time-
to-quiescent (TTQ) run times of each approach while (B) shows the code execution run time of each approach.
Each point reports the median run time across 10 executions. Error bars (dashed) show the standard error
(%) along both axes. Points below the diagonal represent actions for which reconciliation outperformed
forward evaluation. Points above the diagonal represent actions for which forward evaluation outperformed
reconciliation.

TTQ. Across the 80 actions in our six benchmark workflows, reconciliation led to speedups on
all of them. Of these speedups, 70 were by 2X or more and 38 by 3x or more. Recall that TTQ
measures the time it takes for the output map to reach an idle state, signaling that the update has
fully propagated to pixels rendered onscreen. These results suggest that reconciliation more than
halves interface latency in comparison with forward evaluation. Figure 8 A shows the median TTQ
run times for forward evaluation and reconciliation; error bars (dashed) represent the standard
error (‘/%). The cumulative speedup on the benchmark suite as a whole was 3.87x.

Code Execution Times. Speedups were similarly consistent on code execution times as TTQ;
across the 80 actions from our six workflows, we observed that reconciliation sped up all of them.
Additionally, these speedups were often considerably more dramatic; of the 80 speedup instances, 56
(70%) were by an order of magnitude (10X) or more. Figure 8B shows the median code execution run
times for forward evaluation and reconciliation; error bars (dashed) again represent the standard
error. The cumulative speedup on the benchmark suite as a whole was 3.19x.

Speedups from reconciliation increased as forward evaluation TTQ increased; that is,
longer-running programs tended to see greater latency reduction from reconciliation.

We observed a positive correlation between forward evaluation TTQ and speedups from rec-
onciliation (Spearman’s rank correlation coefficient of 0.732). This indicates that reconciliation is
especially helpful (produces higher speedups) for tasks that have long forward evaluation times.
Figure 9 shows forward evaluation TTQ plotted against speedup.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 175. Publication date: June 2025.

175:14 Parker Ziegler, Justin Lubin, and Sarah E. Chasins

41 Speedup

6

T T T T T
Ok 2k 4k 6k 8k 10k 12k 14k 16k 18k

Forward Evaluation (TTQ) (ms) >

Fig. 9. Comparing forward evaluation TTQ against speedup from reconciliation. Each point reports
the median run time of forward evaluation TTQ on the x-axis and the speedup attributed to reconciliation
on the y-axis. Error bars (dashed) show the standard error for forward evaluation observations. The two
measures are positively correlated (Spearman’s rank correlation coefficient of 0.732).

6.2 Study 2: Measuring Reconciliation Performance In Situ

6.2.1 Setup. To extend our observation of reconciliation’s performance beyond the benchmark
suite, we instrumented the production deployment of cartokit to capture performance in situ
on organic real-world use over a 30-day period. Importantly, our instrumentation captures no
information about users or their data; we only record the system’s recon run time, patch run time,
and the size of generated programs (but not the contents of the programs themselves). Thus, we
cannot report any information on the size of user datasets, the number of interactions in a user
session, or the number of user sessions that occurred. Additionally, we do not have any information
on browser usage, operating system usage, or RAM capacity on users’ machines. In total, we
collected 153 reconciliation traces.

The goal of this study was to identify whether real users’ observed recon run times were in the
same range as those observed in our benchmark study. Beyond addressing this question, we cannot
learn much from this data. For example, we do not know whether collected traces came from a few
long-running sessions or many shorter sessions, or whether users were working with large or small
datasets. Lacking this information on the diversity and complexity of user workloads, we cannot
make more definitive claims about reconciliation’s performance in the general case. However, if
production traces displayed similar performance characteristics to traces from our benchmark suite,
it would provide some signal that our benchmarks realistically capture production use. In situ use
may also test interaction sequences that our benchmarks did not exercise.

Capturing TTQ in a production context was unfortunately not possible. This is due to the fact
that rendering updates enqueued by reconciliation may be batched by MapLibre GL]S, meaning
that multiple reconciliation events may produce only a single idle event. (For our benchmark
evaluation, we waited for the idle event to fire before triggering the next interaction, ensuring
one idle event per output update.) Thus, we report here only the code execution time of the
reconciliation algorithm.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 175. Publication date: June 2025.

Fast Direct Manipulation Programming with Patch-Reconciliation Correspondence 175:15

4 Frequency

130

=1 122 11 11 2
50 100 150 200 250 300 350 400 450 500
Duration (ms) >

Fig. 10. Distribution of reconciliation code run execution times from production traces. Reconciliation
times are aggregated into bins of 10ms. A large majority of reconciliation times (130/153) fall within the
0-10ms range.

6.2.2 Results. In production, reconciliation achieved a median code execution time of
1.1ms, closely mirroring performance in our benchmark suite. Median reconciliation code
execution time across the benchmark suite was 0.9ms, suggesting the performance we observe in
our benchmark suite was relatively representative of in situ use. Of the 153 traces, 130 of them
(=85%) took less than 10ms and 147 of them (~96.1%) took less than 100ms. The remaining traces
tended to involve output updates that are inherently expensive, such as transitioning to a Dot
Density layer or computing new statistical breaks for a Choropleth layer. Such updates require
full linear scans of the dataset. Figure 10 shows the distribution of reconciliation’s code execution
times in production.

6.3 Time-to-Quiescent vs. Code Execution Times

A key difference between our evaluation and evaluations in prior work on direct manipulation pro-
gramming systems (e.g., [38, 64, 65]) is the choice to measure time-to-quiescent in addition to code
execution times as a performance metric. Our goal with this decision was to assess reconciliation’s
impact on interface latency, which we believe is a stronger indicator of the interactivity of a direct
manipulation programming system. Moreover, as our evaluation revealed, code execution times
were not always accurate predictors of TTQ. For example, Workflow 3-A4 had the highest median
reconciliation code execution time of any action (195.35ms), yielding only a 1.03X speedup over
forward evaluation (200.55ms). However, the same action actually witnessed a 3.89x TTQ speedup
from reconciliation (3177.10ms) compared to forward evaluation (12347.40ms). Figure 11 plots
reconciliation’s code execution time against its TTQ run time. The Spearman’s rank correlation
coefficient between the two measures is 0.070, indicating that the measures are not correlated.
Results like this suggest that measuring code execution times alone may lead to (1) false conclusions
about how fast a direct manipulation programming system is from a user’s perspective and (2)
erroneous claims about the classes of interactions that are relatively fast or slow.

One plausible explanation for the absence of TTQ measurement in prior work is that generated
outputs are inexpensive to compute, and so there is little (if any) difference between code execution
times and TTQ for these contexts. Indeed, modern web browsers are extremely efficient at rendering
HTML and SVG. In contrast, geospatial visualization—with its tens of megabyte dataset sizes,
asynchronous tile generation algorithms, and aggressive use of the GPU—is significantly more
resource-intensive. Going forward, if the community attempts to extend direct manipulation to
longer-running computations, it is possible that the distinction between quiescent times and
execution times will become more important.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 175. Publication date: June 2025.

175:16 Parker Ziegler, Justin Lubin, and Sarah E. Chasins

1 Reconciliation (TTQ) (ms)

&9 @ ow o

1 10 100

Reconciliation (ms) >

Fig. 11. Comparing reconciliation code execution time to reconciliation TTQ run time. Each point
reports the median run time of each measure across 10 executions. Error bars (dashed) show the standard
error (%) along both axes. The two measures have no discernible correlation (Spearman’s rank correlation

coefficient of 0.070).

7 Discussion
7.1 patch-recon Extends to General-Purpose Programming Languages

While Section 7.2 discusses how our choice of language in Section 4.1 is representative of existing
languages for tasks amenable to direct manipulation, it is natural to wonder: What about a language
more like the A-calculus? In particular, can patch-recon work in languages with general recursion?

patch-recon can directly apply to general-purpose languages with recursion. The key insight
is that the complexity of patch-recon is a function of the user actions that the system developer
makes available, not the underlying language. As we will see in the following example, this is
because the signature of recon in Definition 3.1 is recon : Diff X Val — Val and thus depends only
on the definition of Diff and Val, not the underlying language Prog.

Example 7.1. Here we describe how to apply patch-recon to the direct manipulation program-
ming system Sketch-n-Sketch [30], which uses an Elm-like functional programming language
based on the A-calculus with general recursion. Consider the program P below that constructs four
differently-colored SVG <circle> elements with radius 5 at the coordinates (0, 0), (10, 10), (20, 20),
and (30, 30):

List. indexedMap
(\i ¢ -> circle 5 (10 = i) (10 = i) c)
[5 : 5]

(List.indexedMap is a function that is implemented using recursion.) Let’s say a user changes
the color of the second <circle>to "red" via the GUI The novelty of prior work is defining a
program transformation ¢ that, applied to this program, produces a new program P’ evaluating

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 175. Publication date: June 2025.

Fast Direct Manipulation Programming with Patch-Reconciliation Correspondence 175:17

to the same set of <circle> elements, but with the color of the second <circle> set to "red."
In our framing, this amounts to defining patch, which prior work has successfully tackled using
ideas like bidirectional evaluation [38] and value provenance [30] (Section 8.1). We do not claim
any new contributions in this space.

Rather, we require a new function recon that can immediately be applied to the current output
to produce new output without re-running the program. This last stipulation—not re-running
the program—differentiates the patch-recon technique from what is currently implemented in
Sketch-n-Sketch. In Sketch-n-Sketch, changing the color of the <circle> will generate the program
transformation 6 above. This transformation creates a new program that is evaluated to get the new
output. In other words, every single time a color is changed on a <circle>, Sketch-n-Sketch goes
through the entire patch-eval cycle (the upper-right path in our commutative square in Definition
3.1). The same situation occurs every time an element is moved, duplicated, etc.

We can bypass this by defining a reconciliation function recon here. In this case, recon would
simply set the fill attribute of the selected SVG circle element to "red" directly. For moving,
recon would directly update the cx and cy attributes of the <circle> element; for duplication,
recon would simply clone the <circle> element and place it within the same subtree in the DOM.

Example 7.2. Let us now complicate the example above. Say we have the following program P”
in Sketch-n-Sketch, which introduces a variable, color, that we reference in our iterated list.

color =

List. indexedMap
(\i ¢ -> circle 5 (10 = i) (10 = i) c)
[, color, color, colorl]

In this case, if we change the color of the second <circle> to "red" in the GUI, we likely expect
the system to update the string bound to color from "violet" to "red" (as opposed to updating
just the second element in the list). Zhang et al. [66] demonstrated how to implement patch to
capture these semantics, but how would we implement recon for this case? In this formulation, we
are obligated to update <circle> elements beyond those the user has actively selected.

One strategy to address this problem is to tag output values with provenance information. For
example, in cartokit, marks carry both the id of the layer they belong to as well as functions for
re-computing channel values based on their associated data. Thus, when a single channel on a
single mark is updated, recon can easily identify the full set of affected marks and, for each mark,
re-execute the function of the modified channel. In a setting like our example, we can imagine using
expression provenance [2] to derive similar information, such that each <circle> “knows” that its
fill value is derived from the color variable (e.g., by tagging it with a shared identifier). recon
can then use this information to re-evaluate the fill of affected <circle> elements whenever the
color variable changes.

Ultimately, the key insight to take away from this example is that recon is enabled by carrying
some computation (e.g., cartokit’s channel functions) to output values for evaluation as needed.
This general approach may be useful for implementing recon when patch is more sophisticated.

Falling Back on Forward Evaluation. Of course, diffs can be even more complex than the two
examples above. Sketch-n-Sketch can famously create a Koch snowflake fractal parameterized
by recursive depth using only direct manipulation on the output [30]. In this extreme situation,
a corresponding diff would introduce recursion into a defined function, which can essentially
be considered a whole program rewrite. We view it as improbable that reconciliation will work

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 175. Publication date: June 2025.

175:18 Parker Ziegler, Justin Lubin, and Sarah E. Chasins

for such transformations; the program simply does need to be re-run. However, in such cases,
patch-recon degrades gracefully to prior state of the art; if a recon function cannot be defined for
a certain diff, the system can fall back on simply running forward evaluation. In other words, if
the lower-left path of the commutative square in Definition 3.1 is not available, we can always fall
back to the upper-right path.

7.2 Representativeness of the cartokit Language

By design, the language L r we introduce in Section 4.1 is quite similar to a large number of
existing languages for tasks amenable to direct manipulation. These languages include, for example,
Vega [52, 59] and Tableau’s VizQL [27]. Overall, this kind of visualization language has had broad
adoption, and there are a tremendous number of them—[39] recently identified 57, many with
substantial real-world use. We provide concrete examples of how patch-recon applies to two of
these languages; the approach is essentially the same as that for our language L.

Example 7.3. Consider Vega-Lite [51, 60], a language for interactive charts. Here is a simple
example of a (partial) Vega-Lite specification for a stacked area chart:

"encoding": {
"x"e A{
"timeUnit": , "field":
"axis": {"format":
be
"yt {
"aggregate": , "field":

-

bg

"color": {
"field":
"scale": {"scheme": }

)

Interestingly, this language is quite similar to L in structure and abstraction level, hinting at how
we can implement patch-recon. Let us imagine the user changes the color scheme of this visualiza-
tion to a different categorical color scheme (e.g., "observable10@") via a GUI interaction. In this case,
patch would simply update the color.scale.scheme value in the program to "observablel19."
Now, to define recon, we take a similar approach to what we do in cartokit:

(1) Create a scale function mapping the domain of the variable visualized in the color channel
"series") to the range of discrete colors in the selected scheme.
(2) Obtain references to all rendered marks. For Vega-Lite, these are SVG elements.
(3) For each rendered mark:
(a) Call the scale function, passing the mark’s corresponding data value as the argument to
obtain the mark’s new color.
(b) Update the mark’s fill and stroke attributes.

Crucially, using patch-recon would not entail re-evaluating the entire Vega-Lite spec using its
interpreter; rather, we would precisely update only the relevant portion of the program and the

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 175. Publication date: June 2025.

Fast Direct Manipulation Programming with Patch-Reconciliation Correspondence 175:19

relevant attributes of rendered SVG elements in the DOM. Proving soundness of patch-recon in
this domain would take a proof very similar to cartokit’s proof (see Appendix A).

Example 7.4. Beyond data visualization, other domains amenable to direct manipulation (such
as visual graphics creation and image processing) use similar languages. For our next concrete
example, we will describe patch-recon for a direct manipulation programming system targeting
Mermaid [40], a popular diagramming language. Imagine we had a simple flowchart diagram in
such a system as follows:

flowchart LR
id1{{First node}?}
id2{{Second node}?}
id1 —> id2

If we wanted to update the shape of the second node in the diagram from a hexagon (indicated
by the curly braces on the third line) to a parallelogram, patch could change the third line of the
above program to id2[/Second node/] (brackets and forward slashes indicate parallelogram). A
recon function would update the points and transform attributes of the rendered SVG polygon,
similar to the Sketch-n-Sketch example from Section 7.1. In this case, because the diff is simple,
recon is also simple. patch-recon avoids the need for full program re-evaluation, which could be
particularly important for a diagram with hundreds or thousands of nodes.

7.3 When should we use patch-recon vs. forward evaluation?

A patch-recon approach is (probably) harder to implement than an approach that centers on
running forward evaluation to keep program and output in agreement. For situations where
forward evaluation is sufficiently fast, the corresponding patch-recon implementation may be
more complex for a system developer to reason about and more heavyweight than its advantages
justify. We suggest using patch-recon in cases where programs are long-running; in cases where
programs are short-running, we recommend using the standard approach of patch followed by
forward evaluation. In our view, patch-recon does not replace forward evaluation. Rather, it
offers an alternative for settings where forward evaluation would make a direct manipulation
programming environment infeasible.

7.4 When should we use patch-recon vs. caching?

In Section 2, we argued that implementing an ad hoc caching scheme effectively approaches patch-
recon in the limit, albeit without the soundness guarantee. Going beyond correctness, we believe
there may be additional performance and maintainability benefits associated with patch-recon.
To build this intuition, let us revisit the example from Section 4, where a GUI interaction triggers
removal of the stroke-width channel from a single layer on the map. Notice here that patch-recon’s
update strategy is both extremely fine-grained and operates in place; it only modifies the stroke-
width channel of marks in the target layer while leaving other channels and layers untouched.
Moreover, as previously discussed, patch and recon run in parallel in this context—there is no
ordering constraint on their execution. Now, imagine that we replaced patch-recon with a layer-
level caching scheme that only re-evaluated modified layers while leaving the remainder intact.
On the surface, this may sound like an equivalent approach! In practice, however, this would be a
variation on the standard technique coupling a patch procedure with forward evaluation, with the
refinement that forward evaluation would reuse cached marks from unmodified layers. Notice that
this strategy still encounters two familiar issues: sequential execution and redundant computation.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 175. Publication date: June 2025.

175:20 Parker Ziegler, Justin Lubin, and Sarah E. Chasins

Concretely, an implementation would need to (1) throw away all rendered marks associated with
the modified layer, (2) update the layer in the program via patch, and finally (3) re-evaluate the layer
to a new set of rendered marks, despite the fact that many channels on the marks (e.g., fill-color,
fill-opacity) did not change. For large data (e.g., our implementation handles up to 1 million records),
the difference between in-place updates and partial re-evaluation produces a significant increase
in interface latency; we expect other direct manipulation programming systems targeting large
data or long-running programs will face the same issue. In short, an ad hoc caching scheme could
get us some performance improvement over forward evaluation, but it would certainly leave some
performance wins on the table.

In addition, it is unclear that such a scheme would be easier to implement or evolve than
patch-recon. Concretely, realizing the layer-level caching approach would require (1) building,
maintaining, and invalidating a cache of rendered marks, (2) maintaining a mapping of program
segments to cache entries, and (3) implementing a cache-aware partial evaluator. Moreover, it
may be difficult to adapt this approach over time if we want to change cache granularity; for
example, lowering our caching logic to the mark level would involve a full re-implementation.
patch-recon encourages a different view from the start: for a given GUI interaction, one wants
to make the smallest possible change to bring the program and output into agreement. In our
experience developing cartokit, this made the engineering goal clear—it shifted us from thinking
about what may be reused (caching) to determining what must be updated (patch-recon).

Ultimately, ad hoc caching may be a good choice when a system developer needs modest
performance improvements over forward evaluation to reach their interface latency goals. However,
we believe that a patch-recon structure is more likely to guide system developers to a performant
and maintainable implementation from the outset.

8 Related Work
8.1 Improving patch

Existing research on direct manipulation programming systems has focused primarily on the
problem of propagating changes in the program output to changes in the program itself; that is,
improving the patch function [8, 14, 23, 29, 31, 43, 54]. Some techniques heavily constrain the
locations or types of patch updates, including livelits [43] (which constrains updates to holes)
and early versions of Sketch-n-Sketch [14] (which constrain updates to numeric constants). Other
techniques like bidirectional evaluation [38], delta fusion [66], value provenance tracing [30], and
others [64, 65] have enabled more expressive program transformations, such as function creation,
recursive calls, and expression hoisting. Collectively, these techniques are attempts at tackling the
view-update problem [10] for GUIs as part of the broader research on bidirectional programming
languages [12, 22, 42].

In contrast to this prior work, we do not introduce a new technique for propagating output
changes to source programs. Rather, we see our patch-recon approach as complementary; we can
combine any of the techniques described above with reconciliation as long as we continue to prove
patch-recon correspondence.

8.2 Improving recon

Reconciliation is a form of incremental program evaluation; given a small program transformation
in the form of a diff, reconciliation determines how to execute just the diff to update the current
program output. In this section, we survey the prior work on incremental evaluation more generally.
While a handful of related techniques focus on incrementalizing evaluation with respect to program

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 175. Publication date: June 2025.

Fast Direct Manipulation Programming with Patch-Reconciliation Correspondence 175:21

updates (akin to reconciliation), others focus on responding to updates in the data supplied as
program input. Thus, we organize our discussion along this axis.

8.2.1 Incremental Evaluation with Program Updates. Reconciliation shares at least one core aim with
prior work on incremental evaluation of evolving programs—reducing redundant recomputation.
Given some change to a program, incremental evaluation techniques attempt to identify and re-
evaluate only the portion of the program affected by the change. For example, incremental compilers
[33, 45-47, 55] operate by recompiling only those statements that are either (1) modified by the
programmer or (2) dependent on modified statements. Similarly, incremental program analysis
techniques (e.g., for computing dominator trees [58] or points-to analysis [48]) compute updates to
the analysis information based solely on the program change rather than rerunning the analysis
from scratch [16, 63]. Incremental evaluators for logic programs [49, 50] construct memo tables
mapping “calls” (subgoals) to their “answers” (provable instances); when the facts of a program
change, only the affected calls must be recomputed. Interestingly, much of this literature cites
improving the interactivity of programming systems as a core motivation—precisely the problem
reconciliation aims to tackle in the direct manipulation context.

8.2.2 Incremental Evaluation with Program Input Updates. Another branch of work in incremental
evaluation and self-adjusting computation focuses on rerunning only the necessary parts of a
program when the program input changes [3, 4, 7, 13, 15]. Broadly, these techniques work by
constructing (1) a dynamic dependency graph capturing dependencies between parts of the com-
putation and (2) a change propagation algorithm that identifies and re-evaluates dependencies in
response to input changes. When the result of re-evaluation does not yield a new output, related
dependencies need not be re-evaluated; their prior outputs can simply be reused. This general
strategy plays a critical role in modern web frameworks for constructing user interfaces (e.g., React
[19], Svelte [28]), which include some strategy for incremental update of the DOM in response to
changes in application state (e.g., virtual DOM [20], signals [15, 18]). This work also shares a close
connection to the rich literature on incremental view maintenance in databases [1, 9, 24-26].

8.2.3 recon-Style Updates Outside of Programming Contexts. Many GUIs use direct manipulation
as their core interaction model but do not author programs (e.g., Photoshop [6], llustrator [5], and
others [21, 32]). Users leverage these interfaces to produce a particular output, but not a program
that they can apply to other inputs. Most tools in this category respond to GUI actions by calculating
a next output based on the current output. For example, in Photoshop, the system produces the next
image by modifying the current image, not by starting from the original input image and rerunning
the entire sequence of user-triggered modifications. In that this process presents a new value to the
user by operating on an existing value, we can think of it as being a recon-style operation. Despite
this surface resemblance, these tools are under no obligation to produce a program. This means
they sidestep the central, animating obligation of our approach: to update a program and its output
value in parallel, and to keep them in agreement without running the program in its entirety.

8.2.4 Reconciliation for Direct Manipulation Programming. We are not aware of any works that
use recon-style approaches in the context of direct manipulation programming.

8.2.5 Summary. In contrast to the prior work on incremental evaluation, we do not introduce a new
technique for implementing recon. Rather, we see our patch-recon approach as complementary;
we can integrate some of the techniques described above into reconciliation as long as we continue
to prove patch-recon correspondence.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 175. Publication date: June 2025.

175:22 Parker Ziegler, Justin Lubin, and Sarah E. Chasins

8.3 patch-recon Correspondence

Our central contribution is to exploit patch-recon correspondence by using reconciliation as a fast
means of achieving synchronization between programs and values. Our patch-recon correspon-
dence is analogous to a classic class of theorems from the literature on bidirectional programming
systems called PUTGET [11, 22, 44, 61, 66], also known as CONSISTENCY [36, 37, 62] or UPDATEE-
VAL [38]. At a high level, these theorems state that if a value v’ is backward-evaluated onto a program
e that evaluates to v, then the resulting program e’ will evaluate to v’. Sometimes, this value is
described as the result of a direct manipulation, either directly [38] or in terms of a syntactic patch
obligation [66]. In contrast to our work, the mapping between v and v’ —that is, reconciliation—is
only used to reason about the correctness of these systems, as prior work has always assumed that
simply evaluating e’ to obtain o’ is fast enough.

8.4 Improving Performance for Direct Manipulation Programming Systems

Although our chosen technique for extending direct manipulation programming to long-running
programs is to eliminate forward evaluation via patch-recon correspondence, our higher-level
goal is to make direct manipulation programming systems efficient for interactive, large-scale
computation. We therefore share a goal with research that aims to speed up direct manipulation
programming, even if it does not eliminate forward evaluation.

Most evaluations of direct manipulation programming systems in the literature focus on assessing
expressiveness (that is, the ability of the system to produce target programs and outputs primarily
or solely through direct manipulation [14, 30, 66]) rather than performance. Some papers include
data on forward evaluation times [38, 64, 65], but generally emphasize backward evaluation of
output updates to program updates. We are aware of only two works identifying repeated forward
evaluation of modified programs as a barrier to achieving interactive speeds. Transmorphic [53], a
direct manipulation programming system for GUI development, reduces the total time spent on
forward evaluation by deferring full forward evaluation in cases where updates can be effectively
emulated on the output. Similarly, [34] offers additional “speculative” visual feedback on output
manipulations in order to defer running forward evaluation.

9 Conclusion

Direct manipulation programming systems have traditionally relied on forward evaluation to
guarantee program-output agreement by construction. While this strategy has succeeded for short-
running programs in domains like vector graphics and HTML documents, it has not allowed us to
scale direct manipulation programming to authoring long-running programs. In these contexts,
re-executing a complete program in response to every user interaction quickly crosses outside
of interactive speeds. This work presents patch-reconciliation correspondence, a novel strategy for
enforcing program-output agreement in direct manipulation programming systems that eliminates
the need for forward evaluation altogether. We prove our patch-recon approach sound for a lan-
guage and a set of direct manipulations interactions for the domain of geospatial data visualization,
and implement this instantiation in a new direct manipulation programming system, cartokit.
Our approach reduces interface latency on real-world program-authoring tasks, yielding larger
speedups for longer-running programs. We feel patch-recon is an important first step in making
direct manipulation programming feasible for interactively authoring long-running programs. We
also hope this work unlocks new research opportunities in direct manipulation programming by
expanding the paradigm’s applicability to tasks previously considered beyond its reach.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 175. Publication date: June 2025.

Fast Direct Manipulation Programming with Patch-Reconciliation Correspondence 175:23

Data Availability Statement

cartokit is freely available at https://alpha.cartokit.dev, and additional documentation for users
is available at https://docs.cartokit.dev. The cartokit source code is also publicly available at
https://github.com/parkerziegler/cartokit. We provide an archived snapshot of cartokit v0.5.2
and our full evaluation harness in amdé4-compatible and arm64v8-compatible Docker images on
Zenodo [67, 68].

Acknowledgments

We are extremely grateful to our anonymous OOPLSA and PLDI reviewers for their thoughtful and
actionable feedback, and to our outstanding PLDI shepherd for their guidance and deep engagement
with our work. We would also like to thank the members of PLAIT Lab and EPIC Data Lab at the
University of California, Berkeley for their evergreen support and encouragement. Thanks are due,
as well, to cartokit’s early adopters in the data journalism community. This work is supported
in part by NSF grants FW-HTF 2129008 and CA-HDR 2033558, as well as by gifts from Google,
G-Research, Adobe, and Microsoft. Chasins is a Chan Zuckerberg Biohub Investigator.

References

[1] Supun Abeysinghe, Qiyang He, and Tiark Rompf. 2022. Efficient Incrementialization of Correlated Nested Aggregate
Queries using Relative Partial Aggregate Indexes (RPAI). In Proceedings of the 2022 International Conference on
Management of Data (SIGMOD ’22). Association for Computing Machinery, New York, NY, USA, 136-149. doi:10.1145/
3514221.3517889
[2] Umut A. Acar, Amal Ahmed, James Cheney, and Roly Perera. 2012. A Core Calculus for Provenance. In Principles of
Security and Trust, Pierpaolo Degano and Joshua D. Guttman (Eds.). Springer, Berlin, Heidelberg, 410-429. doi:10.
1007/978-3-642-28641-4_22
[3] Umut A. Acar, Daniel Anderson, Guy E. Blelloch, Laxman Dhulipala, and Sam Westrick. 2020. Parallel Batch-Dynamic
Trees via Change Propagation. In 28th Annual European Symposium on Algorithms (ESA 2020) (Leibniz International
Proceedings in Informatics (LIPIcs), Vol. 173), Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders (Eds.). Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, Dagstuhl, Germany, 2:1-2:23. doi:10.4230/LIPIcs.ESA.2020.2
[4] Umut A. Acar, Guy E. Blelloch, and Robert Harper. 2006. Adaptive Functional Programming. ACM Transactions on
Programming Languages and Systems 28, 6 (Nov. 2006), 990-1034. doi:10.1145/1186632.1186634
Adobe. 2024. Adobe Illustrator. https://www.adobe.com/products/illustratorhtml. Accessed: 2024-11-14.
Adobe. 2024. Adobe Photoshop. https://www.adobe.com/products/photoshop.html. Accessed: 2024-11-12.
Daniel Anderson, Guy E. Blelloch, Anubhav Baweja, and Umut A. Acar. 2021. Efficient Parallel Self-Adjusting
Computation. In Proceedings of the 33rd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA 21).
Association for Computing Machinery, New York, NY, USA, 59-70. doi:10.1145/3409964.3461799
Gideon Avrahami, Kenneth P. Brooks, and Marc H. Brown. 1989. A Two-View Approach to Constructing User Interfaces.
SIGGRAPH Comput. Graph. 23, 3 (July 1989), 137-146. doi:10.1145/74334.74347
Shivnath Babu and Jennifer Widom. 2001. Continuous Queries Over Data Streams. SIGMOD Rec. 30, 3 (Sept. 2001),
109-120. doi:10.1145/603867.603884
[10] F. Bancilhon and N. Spyratos. 1981. Update Semantics of Relational Views. ACM Trans. Database Syst. 6, 4 (Dec. 1981),
557-575. doi:10.1145/319628.319634

[11] Aaron Bohannon, J. Nathan Foster, Benjamin C. Pierce, Alexandre Pilkiewicz, and Alan Schmitt. 2008. Boomerang;:
Resourceful Lenses for String Data. In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL ’08). Association for Computing Machinery, New York, NY, USA, 407-419. doi:10.
1145/1328438.1328487

[12] Aaron Bohannon, Benjamin C. Pierce, and Jeffrey A. Vaughan. 2006. Relational Lenses: A Language for Updatable
Views. In Proceedings of the Twenty-Fifth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems
(PODS ’06). Association for Computing Machinery, New York, NY, USA, 338-347. doi:10.1145/1142351.1142399

[13] Yan Chen, Umut A. Acar, and Kanat Tangwongsan. 2014. Functional Programming for Dynamic and Large Data with Self-
Adjusting Computation. In Proceedings of the 19th ACM SIGPLAN International Conference on Functional Programming
(ICFP ’14). Association for Computing Machinery, New York, NY, USA, 227-240. doi:10.1145/2628136.2628150

[14] Ravi Chugh, Brian Hempel, Mitchell Spradlin, and Jacob Albers. 2016. Programmatic and Direct Manipulation, Together

at Last. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation

— —_ ——
(o) ~N o G
— —

—
A=)
—

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 175. Publication date: June 2025.

https://alpha.cartokit.dev
https://docs.cartokit.dev
https://github.com/parkerziegler/cartokit
https://doi.org/10.1145/3514221.3517889
https://doi.org/10.1145/3514221.3517889
https://doi.org/10.1007/978-3-642-28641-4_22
https://doi.org/10.1007/978-3-642-28641-4_22
https://doi.org/10.4230/LIPIcs.ESA.2020.2
https://doi.org/10.1145/1186632.1186634
https://www.adobe.com/products/illustrator.html
https://www.adobe.com/products/photoshop.html
https://doi.org/10.1145/3409964.3461799
https://doi.org/10.1145/74334.74347
https://doi.org/10.1145/603867.603884
https://doi.org/10.1145/319628.319634
https://doi.org/10.1145/1328438.1328487
https://doi.org/10.1145/1328438.1328487
https://doi.org/10.1145/1142351.1142399
https://doi.org/10.1145/2628136.2628150

175:24 Parker Ziegler, Justin Lubin, and Sarah E. Chasins

(PLDI ’16). Association for Computing Machinery, New York, NY, USA, 341-354. doi:10.1145/2908080.2908103

[15] Evan Czaplicki and Stephen Chong. 2013. Asynchronous Functional Reactive Programming for GUIs. In Proceedings of
the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’13). Association for
Computing Machinery, New York, NY, USA, 411-422. doi:10.1145/2491956.2462161

[16] Alan Demers, Thomas Reps, and Tim Teitelbaum. 1981. Incremental Evaluation for Attribute Grammars with
Application to Syntax-Directed Editors. In Proceedings of the 8th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL ’81). Association for Computing Machinery, New York, NY, USA, 105-116. doi:10.1145/
567532.567544

[17] MDN Web Docs. 2024. Performance — Web APIs. https://developer.mozilla.org/en-US/docs/Web/API/Performance.
Accessed: 2024-10-09.

[18] Conal Elliott and Paul Hudak. 1997. Functional Reactive Animation. In Proceedings of the Second ACM SIGPLAN
International Conference on Functional Programming (ICFP °97). Association for Computing Machinery, New York, NY,
USA, 263-273. doi:10.1145/258948.258973

] Facebook. 2024. React. https://react.dev/. Accessed: 2024-09-24.

[20] Facebook. 2024. Virtual DOM and Internals. https://legacy.reactjs.org/docs/faq-internals.html. Accessed: 2024-11-13.

[21] Figma. 2024. Figma. https://figma.com/. Accessed: 2024-11-12.

[22] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce, and Alan Schmitt. 2007. Combinators
for Bidirectional Tree Transformations: A Linguistic Approach to the View-Update Problem. ACM Trans. Program.
Lang. Syst. 29, 3 (May 2007), 17-es. doi:10.1145/1232420.1232424

[23] Koumei Fukahori, Daisuke Sakamoto, Jun Kato, and Takeo Igarashi. 2014. CapStudio: An Interactive Screencast for
Visual Application Development. In CHI '14 Extended Abstracts on Human Factors in Computing Systems (CHI EA *14).
Association for Computing Machinery, New York, NY, USA, 1453-1458. doi:10.1145/2559206.2581138

[24] Timothy Griffin and Leonid Libkin. 1995. Incremental Maintenance of Views with Duplicates. In Proceedings of the 1995
ACM SIGMOD International Conference on Management of Data (SIGMOD °95). Association for Computing Machinery,
New York, NY, USA, 328-339. doi:10.1145/223784.223849

[25] Ashish Gupta and Inderpal Singh Mumick. 1999. Materialized Views: Techniques, Implementations, and Applications.
In Materialized Views: Techniques, Implementations, and Applications. MIT Press, Cambridge, MA, USA, 145-157.
doi:10.7551/mitpress/4472.001.0001

[26] Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrahmanian. 1993. Maintaining Views Incrementally. In Proceedings
of the 1993 ACM SIGMOD International Conference on Management of Data (SIGMOD °93). Association for Computing
Machinery, New York, NY, USA, 157-166. doi:10.1145/170035.170066

[27] Pat Hanrahan. 2006. VizQL: A Language for Query, Analysis and Visualization. In Proceedings of the 2006 ACM SIGMOD
International Conference on Management of Data (SIGMOD ’06). Association for Computing Machinery, New York, NY,
USA, 721. doi:10.1145/1142473.1142560

[28] Rich Harris and Svelte Contributors. 2024. Svelte. https://svelte.dev/. Accessed: 2024-09-24.

[29] Brian Hempel and Ravi Chugh. 2016. Semi-Automated SVG Programming via Direct Manipulation. In Proceedings of
the 29th Annual Symposium on User Interface Software and Technology (UIST ’16). Association for Computing Machinery,
New York, NY, USA, 379-390. doi:10.1145/2984511.2984575

[30] Brian Hempel, Justin Lubin, and Ravi Chugh. 2019. Sketch-n-Sketch: Output-Directed Programming for SVG. In
Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology (UIST °19). Association for
Computing Machinery, New York, NY, USA, 281-292. doi:10.1145/3332165.3347925

[31] Brian Hempel, Justin Lubin, Grace Lu, and Ravi Chugh. 2018. Deuce: A Lightweight User Interface for Structured
Editing. In Proceedings of the 40th International Conference on Software Engineering (ICSE ’18). Association for Computing
Machinery, New York, NY, USA, 654-664. doi:10.1145/3180155.3180165

[32] Jennifer Jacobs, Sumit Gogia, Radomir Méch, and Joel R. Brandt. 2017. Supporting Expressive Procedural Art Creation
through Direct Manipulation. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (CHI
’17). Association for Computing Machinery, New York, NY, USA, 6330-6341. doi:10.1145/3025453.3025927

[33] Mark Kahrs. 1979. Implementation of an Interactive Programming System. In Proceedings of the 1979 SIGPLAN
Symposium on Compiler Construction (SIGPLAN °79). Association for Computing Machinery, New York, NY, USA, 76-82.
d0i:10.1145/800229.806956

[34] Richard Lin, Rohit Ramesh, Nikhil Jain, Josephine Koe, Ryan Nuqui, Prabal Dutta, and Bjoern Hartmann. 2021. Weaving

Schematics and Code: Interactive Visual Editing for Hardware Description Languages. In The 34th Annual ACM

Symposium on User Interface Software and Technology (UIST °21). Association for Computing Machinery, New York, NY,

USA, 1039-1049. doi:10.1145/3472749.3474804

MapLibre. 2024. MapLibre GL JS. https://maplibre.org/maplibre-gl-js/docs/. Accessed: 2023-04-05.

Kazutaka Matsuda and Meng Wang. 2015. Applicative Bidirectional Programming with Lenses. In Proceedings of

the 20th ACM SIGPLAN International Conference on Functional Programming (ICFP 2015). Association for Computing

[35
[36

—

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 175. Publication date: June 2025.

https://doi.org/10.1145/2908080.2908103
https://doi.org/10.1145/2491956.2462161
https://doi.org/10.1145/567532.567544
https://doi.org/10.1145/567532.567544
https://developer.mozilla.org/en-US/docs/Web/API/Performance
https://doi.org/10.1145/258948.258973
https://react.dev/
https://legacy.reactjs.org/docs/faq-internals.html
https://figma.com/
https://doi.org/10.1145/1232420.1232424
https://doi.org/10.1145/2559206.2581138
https://doi.org/10.1145/223784.223849
https://doi.org/10.7551/mitpress/4472.001.0001
https://doi.org/10.1145/170035.170066
https://doi.org/10.1145/1142473.1142560
https://svelte.dev/
https://doi.org/10.1145/2984511.2984575
https://doi.org/10.1145/3332165.3347925
https://doi.org/10.1145/3180155.3180165
https://doi.org/10.1145/3025453.3025927
https://doi.org/10.1145/800229.806956
https://doi.org/10.1145/3472749.3474804
https://maplibre.org/maplibre-gl-js/docs/

Fast Direct Manipulation Programming with Patch-Reconciliation Correspondence 175:25

Machinery, New York, NY, USA, 62-74. doi:10.1145/2784731.2784750

Kazutaka Matsuda and Meng Wang. 2018. HOBiT: Programming Lenses Without Using Lens Combinators. In

Programming Languages and Systems, Amal Ahmed (Ed.). Springer International Publishing, Cham, 31-59. doi:10.

1007/978-3-319-89884-1_2

Mikaél Mayer, Viktor Kuncak, and Ravi Chugh. 2018. Bidirectional Evaluation with Direct Manipulation. Proceedings

of the ACM on Programming Languages 2, OOPSLA (Oct. 2018), 127:1-127:28. doi:10.1145/3276497

Andrew M. McNutt. 2023. No Grammar to Rule Them All: A Survey of JSON-style DSLs for Visualization. [EEE

Transactions on Visualization and Computer Graphics 29, 1 (Jan. 2023), 160-170. doi:10.1109/TVCG.2022.3209460

Mermaid Contributors. 2025. Mermaid — Diagramming and Charting Tool. https://mermaid.js.org/. Accessed: 2025-03-

23.

Microsoft. 2024. Playwright. https://playwright.dev/. Accessed: 2024-10-09.

Keisuke Nakano, Zhenjiang Hu, and Masato Takeichi. 2009. Consistent Web Site Updating Based on Bidirectional

Transformation. International Journal on Software Tools for Technology Transfer 11, 6 (Dec. 2009), 453-468. doi:10.1007/

$10009-009-0124-3

[43] Cyrus Omar, David Moon, Andrew Blinn, Ian Voysey, Nick Collins, and Ravi Chugh. 2021. Filling Typed Holes with

Live GUIs. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and

Implementation (PLDI °21). Association for Computing Machinery, New York, NY, USA, 511-525. doi:10.1145/3453483.

3454059

Hugo Pacheco, Zhenjiang Hu, and Sebastian Fischer. 2014. Monadic Combinators for "Putback" Style Bidirectional

Programming. In Proceedings of the ACM SIGPLAN 2014 Workshop on Partial Evaluation and Program Manipulation

(PEPM ’14). Association for Computing Machinery, New York, NY, USA, 39-50. doi:10.1145/2543728.2543737

Lori L. Pollock and Mary Lou Soffa. 1985. Incremental Compilation of Optimized Code. In Proceedings of the 12th

ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages (POPL °85). Association for Computing

Machinery, New York, NY, USA, 152-164. doi:10.1145/318593.318629

Patrick Rein, Robert Hirschfeld, and Marcel Taeumel. 2016. Gramada: Immediacy in Programming Language De-

velopment. In Proceedings of the 2016 ACM International Symposium on New Ideas, New Paradigms, and Reflections

on Programming and Software (Onward! 2016). Association for Computing Machinery, New York, NY, USA, 165-179.

doi:10.1145/2986012.2986022

Steven P. Reiss. 1984. An Approach to Incremental Compilation. In Proceedings of the 1984 SIGPLAN Symposium on

Compiler Construction (SIGPLAN ’84). Association for Computing Machinery, New York, NY, USA, 144-156. doi:10.

1145/502874.502889

Diptikalyan Saha and C. R. Ramakrishnan. 2005. Incremental and Demand-Driven Points-To Analysis using Logic

Programming. In Proceedings of the 7th ACM SIGPLAN International Conference on Principles and Practice of Declarative

Programming (PPDP ’05). Association for Computing Machinery, New York, NY, USA, 117-128. do0i:10.1145/1069774.

1069785

Diptikalyan Saha and C. R. Ramakrishnan. 2006. Incremental Evaluation of Tabled Prolog: Beyond Pure Logic Programs.

In Practical Aspects of Declarative Languages, Pascal Van Hentenryck (Ed.). Springer, Berlin, Heidelberg, 215-229.

do0i:10.1007/11603023_15

Diptikalyan Saha and C. R. Ramakrishnan. 2006. A Local Algorithm for Incremental Evaluation of Tabled Logic

Programs. In Logic Programming, Sandro Etalle and Mirostaw Truszczynski (Eds.). Springer, Berlin, Heidelberg, 56-71.

doi:10.1007/11799573_7

Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey Heer. 2017. Vega-Lite: A Grammar of

Interactive Graphics. IEEE Transactions on Visualization and Computer Graphics 23, 1 (Jan. 2017), 341-350. doi:10.1109/

TVCG.2016.2599030

[52] Arvind Satyanarayan, Kanit Wongsuphasawat, and Jeffrey Heer. 2014. Declarative Interaction Design for Data
Visualization. In Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology (UIST ’14).
Association for Computing Machinery, New York, NY, USA, 669-678. doi:10.1145/2642918.2647360

[53] R. Schreiber, R. Krahn, D.H.H. Ingalls, and R. Hirschfeld. 2017. Transmorphic: Mapping Direct Manipulation to
Source Code Transformations. Universititsverlag Potsdam, Potsdam, Germany. https://books.google.com/books?id=
88RADgAAQBA]

[54] Christopher Schuster and Cormac Flanagan. 2016. Live Programming by Example: Using Direct Manipulation for Live
Program Synthesis. In LIVE Workshop. Rome, Italy.

[55] Mayer D. Schwartz, Norman M. Delisle, and Vimal S. Begwani. 1984. Incremental Compilation in Magpie. In Proceedings
of the 1984 SIGPLAN Symposium on Compiler Construction (SIGPLAN ’84). Association for Computing Machinery, New
York, NY, USA, 122-131. doi:10.1145/502874.502887

[56] Samyukta Sherugar and Raluca Budiu. 2016. Direct Manipulation: Definition. https://www.nngroup.com/articles/direct-
manipulation. Accessed: 2024-11-14.

[37

—

[38

—

[39

—

[40

[t

[41
[42

=

[44

=

[45

—

[46

—

[47

—

[48

—

[49

—

[50

[t

[51

—

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 175. Publication date: June 2025.

https://doi.org/10.1145/2784731.2784750
https://doi.org/10.1007/978-3-319-89884-1_2
https://doi.org/10.1007/978-3-319-89884-1_2
https://doi.org/10.1145/3276497
https://doi.org/10.1109/TVCG.2022.3209460
https://mermaid.js.org/
https://playwright.dev/
https://doi.org/10.1007/s10009-009-0124-3
https://doi.org/10.1007/s10009-009-0124-3
https://doi.org/10.1145/3453483.3454059
https://doi.org/10.1145/3453483.3454059
https://doi.org/10.1145/2543728.2543737
https://doi.org/10.1145/318593.318629
https://doi.org/10.1145/2986012.2986022
https://doi.org/10.1145/502874.502889
https://doi.org/10.1145/502874.502889
https://doi.org/10.1145/1069774.1069785
https://doi.org/10.1145/1069774.1069785
https://doi.org/10.1007/11603023_15
https://doi.org/10.1007/11799573_7
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1145/2642918.2647360
https://books.google.com/books?id=88RADgAAQBAJ
https://books.google.com/books?id=88RADgAAQBAJ
https://doi.org/10.1145/502874.502887
https://www.nngroup.com/articles/direct-manipulation
https://www.nngroup.com/articles/direct-manipulation

175:26 Parker Ziegler, Justin Lubin, and Sarah E. Chasins

[57] Ben Shneiderman. 1983. Direct Manipulation: A Step Beyond Programming Languages. Computer 16, 8 (Aug. 1983),
57-69. doi:10.1109/MC.1983.1654471

[58] Vugranam C. Sreedhar, Guang R. Gao, and Yong-Fong Lee. 1997. Incremental Computation of Dominator Trees. ACM

Trans. Program. Lang. Syst. 19, 2 (March 1997), 239-252. doi:10.1145/244795.244799

Vega Contributors. 2025. Vega — A Visualization Grammar. https://vega.github.io/vega/about/. Accessed: 2025-03-23.

Vega-Lite Contributors. 2025. Vega-Lite — A High-Level Grammar of Interactive Graphics. https://vega.github.io/vega-

lite/. Accessed: 2025-03-23.

[61] Janis Voigtldnder. 2009. Bidirectionalization for Free! (Pearl). In Proceedings of the 36th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL *09). Association for Computing Machinery, New York, NY,
USA, 165-176. doi:10.1145/1480881.1480904

[62] Masaomi Yamaguchi, Kazutaka Matsuda, Cristina David, and Meng Wang. 2022. Synbit: Synthesizing Bidirectional
Programs Using Unidirectional Sketches. Formal Methods in System Design 61, 2 (Dec. 2022), 198-247. doi:10.1007/
$10703-023-00436-9

[63] Frank Kenneth Zadeck. 1984. Incremental Data Flow Analysis in a Structured Program Editor. SIGPLAN Not. 19, 6
(June 1984), 132-143. doi:10.1145/502949.502888

[64] Xing Zhang, Guanchen Guo, Xiao He, and Zhenjiang Hu. 2023. Bidirectional Object-Oriented Programming: Towards
Programmatic and Direct Manipulation of Objects. Proceedings of the ACM on Programming Languages 7, OOPSLA1
(April 2023), 83:230-83:255. doi:10.1145/3586035

[65] Xing Zhang and Zhenjiang Hu. 2022. Towards Bidirectional Live Programming for Incomplete Programs. In Proceedings
of the 44th International Conference on Software Engineering (ICSE °22). Association for Computing Machinery, New
York, NY, USA, 2154-2164. doi:10.1145/3510003.3510195

[66] Xing Zhang, Ruifeng Xie, Guanchen Guo, Xiao He, Tao Zan, and Zhenjiang Hu. 2024. Fusing Direct Manipulations

into Functional Programs. Proceedings of the ACM on Principles of Programming Languages 8, POPL (Jan. 2024),

41:1211-41:1238. doi:10.1145/3632883

Parker Ziegler, Justin Lubin, and Sarah E. Chasins. 2025. cartokit Docker Image. Zenodo. doi:10.5281/zenodo.15047320

Parker Ziegler, Justin Lubin, and Sarah E. Chasins. 2025. cartokit Docker Image (Exact Version for Artifact Evaluation).

Zenodo. doi:10.5281/zenodo.15079881

[59
[60

[R

[67
[68

—

Received 2024-11-15; accepted 2025-03-06

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 175. Publication date: June 2025.

https://doi.org/10.1109/MC.1983.1654471
https://doi.org/10.1145/244795.244799
https://vega.github.io/vega/about/
https://vega.github.io/vega-lite/
https://vega.github.io/vega-lite/
https://doi.org/10.1145/1480881.1480904
https://doi.org/10.1007/s10703-023-00436-9
https://doi.org/10.1007/s10703-023-00436-9
https://doi.org/10.1145/502949.502888
https://doi.org/10.1145/3586035
https://doi.org/10.1145/3510003.3510195
https://doi.org/10.1145/3632883
https://doi.org/10.5281/zenodo.15047320
https://doi.org/10.5281/zenodo.15079881

	Abstract
	1 Introduction
	2 Overview
	3 Problem Statement
	4 Reconciliation for Direct Manipulation Programming
	4.1 Syntax, Semantics, and Patches
	4.2 Reconciliation Function

	5 Implementation
	6 Evaluation
	6.1 Study 1: Comparing Reconciliation vs. Forward Evaluation Performance on Six Real-World Benchmarks
	6.2 Study 2: Measuring Reconciliation Performance In Situ
	6.3 Time-to-Quiescent vs. Code Execution Times

	7 Discussion
	7.1 patch-recon Extends to General-Purpose Programming Languages
	7.2 Representativeness of the cartokit Language
	7.3 When should we use patch-recon vs. forward evaluation?
	7.4 When should we use patch-recon vs. caching?

	8 Related Work
	8.1 Improving patch
	8.2 Improving recon
	8.3 patch-recon Correspondence
	8.4 Improving Performance for Direct Manipulation Programming Systems

	9 Conclusion
	Acknowledgments
	References

