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Drug trial data analyses, climate change and climate economics models, programs for detecting gerrymandering—these
programs shape our lives and our neighbors’ lives. The domain experts who write these programs are practitioners with
deep domain expertise but no formal computing education. These social scientists, scientists, journalists, policymakers, and
other non-traditional programmers work in high-stakes settings where bugs aren’t about run time or downtime. A bug is
the difference between helping and harming whole communities.

My lab develops novel programming tools by studying domain experts who work on high-stakes or societally important
questions. These populations have vastly different needs and a diverse range of skillsets, in contrast to the comparatively
homogeneous population of software engineers supported with mainstream programming languages and tools. It is this
diversity of needs and skillsets—and the risks of ignoring it—that drive my lab’s work. Our work is not ultimately driven
by convenience or usability, although those can play a role. Instead, the core of our research is to develop novel programming
interactions that don’t lead users astray.

The “secret sauce” behind all of my lab’s research is: (i) Close collaboration with non-traditional programmers from a diverse
set of fields. (ii) Combining techniques from Programming Languages (PL) and Human-Computer Interaction (HCI). Together,
these have produced lessons that guide our work across a range of tools. In this statement, I’ll highlight two recurring lessons
in particular: Center editing rather than drafting. Let practitioners express constraints both on program structure and on
program output.

If you’re interested in reading about a few of the key themes running through my lab’s research, continue to Section 1. If you’d
like to jump straight to reading about a couple recent projects that illustrate those themes, go ahead and skip to Section 2.

1 Building Better Programming Tools by Understanding Programmers

1.1 Edit-Centric Programming: Helping Users Navigate the Space of Possible Programs

As we build more and more programming tools for domain experts, it has become obvious: even non-programmers spend
more time editing, adapting, and maintaining programs than they spend on writing a first version [14, 16, 4]. As a community,
we’ve built a strong foundation of tools for drafting programs from scratch. Now we’re ready to introduce the next generation
of tools that will build on that foundation, wrestling with the direction-changing observation that even our best program
drafting tools only work if users can understand and edit the generated programs.

The need to support program editing imposes difficult constraints. For example, the program must be expressed in a language
the user can read, and the authoring interaction must support the user in building a mental model of how their program
works. The recent surge in LLM-authored code has underscored the importance of this point. Many developers now describe
the difficulty of understanding and modifying codebases in which they or others have “vibe coded.” We also see a rising
recognition of the fact that reading and editing code is harder than generating it, even for professional programmers, and
that this pattern is connected to the sudden influx of LLM-inserted bugs in deployed software products.

From my lab’s most recent work on explicitly navigating between neighboring programs [9] all the way back to my own thesis
work on DORA workflows (Demonstrate Once, Refine Anytime), my lab’s program authoring tools have always emphasized
the importance of editing and refinement over one-shot drafting. The central importance of editing informs all of our work (for
example, by constraining us to user-understandable program representations), but it sits at the heart of a few. Our work and
others’ have revealed that synthesizer- and LLM-generated code becomes much less useful if programmers don’t understand it
enough to edit it [5]. We’ve learned that the ability to tweak and adapt programs is highly prized across many domains [16, 14, 5,
11]. We’ve learned how editing behavior depends on language characteristics [7, 14]. We’ve used analyses of the particular editing
actions that real users make—and the bugs that appear when they make them—to guide language design interventions [12, 11].

As we’ve realized the central importance of editing, we’ve designed programming tools specifically to support the editing
journey. Our recent tools explore how programmers benefit from understanding where they can go next from a given program—
understanding the neighborhood of ‘adjacent’ programs. For instance, we introduced a new program synthesis technique,
Programming By Navigation (PBN), around the idea of explicitly navigating the space of only valid programs [9]. To achieve this,
we must know enough about the programmer’s intent to prune all invalid paths through the program space. After that, the key
research questions are about how to support the user in stepping between valid nodes. (See Sec 2.) Another recent work centers
on formalizing the effects of all allowable GUI edit actions in a visual programming environment; we give semantics to all possible
program diffs, representing each diff’s effects both on the program text and on the program output [17]. For settings where the
programmer doesn’t know what edit to make and thus can’t use a GUI to make it, there’s Programming By Scaffolded Demon-
stration (PBSD). A PBSD tool depicts a variety of small program edits, but without acquiring a definition of validity in advance
(in contrast to PBN above). Instead the user must assess whether a given intermediate value moves them closer to their target
output. We can think of PBSD as a way of achieving Programming By Demonstration even when the user doesn’t know the final
output and can’t demonstrate how to get there. Instead the user picks a path through the large, branching graph of possible edits.
The PBSD tool preemptively visualizes the nearby part of the space, showing how each AST transformation changes both the
program and the output. We can apply the program navigation idea at various levels of granularity, from tiny character-level ed-
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its to the sets of edits that programmers themselves find meaningful, as in our work on building up (i) the tree of nearby program
outputs and (ii) how the user traveled between them, based on the user committing to version control [13]. Our tool supported
users in organizing the program space in a way that aligned with how they’d explored it, changed how they visited and revisited
program variants, and changed the programs they ended up with, specifically by changing how they explored the program space.

Our emphasis on editing comes in part from the observation that editing is a harder, bigger, longer-running portion of the
programming process than drafting. However, this also connects to our top-priority goal of not leading users astray. Jumping
directly to a “complete” program can seem convenient. However, a drafting-only process can lock users into programs they
didn’t actually want [5]. A programming tool that treats editing as a first-class concern means there’s still a path to reach
the right program [4], even if drafting didn’t go as planned. Even better, we can offer edit-centric styles of program drafting,
which make users wrestle with more of the key decisions—bringing them directly to the program they actually want [9, 17].

1.2 Sometimes Users Want to Edit the Program; Sometimes Users Want to Edit the Output

Some edits are easy to make directly on a program, reasoning about program structure. Other edits are easy to make indirectly,
by manipulating the program output and letting the change propagate back to the program [5, 16, 11]. The more we build tools
that force users to make only program edits or only output edits, the more we realize that users want the choice to do either.

My lab explores how the programming process changes when we treat the choice between direct program edits and indirect
output edits as a spectrum. In fact, we can build programming tools that move users along two separate but interacting
spectrums: (1) Does the user edit the program mostly by editing the program text or program structure directly, or mostly
by editing the program output? (2) Does the user spend the majority of their time thinking about the code or the program
structure, or do they spend the majority of their time thinking about the program output? Figure 1 shows a pictorial
representation of the space defined by these two axes, indicating where a few of my lab’s programming tools sit on these axes.

In Figure 1, traditional textual editing appears at the lower left—the programmer thinks about the program structure and
edits the program text. In the synthesis literature, we have built a solid foundation of works that move programmers towards
thinking mostly or only about outputs. Traditional Programming By Demonstration (PBD) and Programming By Example
(PBE) ask the programmer to think about the program output and edit the program via output edits. These tools would
sit right at the upper right in Figure 1. Historically, we have tended to assume that tools closer to the upper right are
automatically more usable (and therefore better), across the board. In fact, some edits are straightforward to make on one side
of the spectrum and some on the other, as our work has revealed repeatedly [5, 11]. Likewise, some parts of the programming
process are easier if the user is mostly thinking about the program structure and some if they are mostly thinking about
output [16]. In short, we may find compelling programming interactions anywhere in the whole two-dimensional space.

For a concrete illustration, we’ll take a whirlwind tour of two tools that inhabit underexplored positions in the space. With
Quickpose [13], the programmer exclusively makes edits textually, in the same way as with traditional programming. However,
the programming environment uses representations of the program outputs to focus users on how they’ve evolved the output
and the connections between codebase versions in terms of those outputs; users therefore spend much of their time thinking
not about the program structure but about the edges in a tree of evolving program outputs. A user study revealed this
supported them in tasks ranging from understanding program context to backtracking to coming up with new ideas. In
another tool, Perpend, the user sees a large set of tool-proposed edits both in terms of the effect on the program and in
terms of the effect on the output. Our study revealed this changes programmers’ behavior relative to straightforward DM
programming, which requires users to have a particular program output in mind first, and to implement it via GUI interactions
in order to take the next step forward. Specifically, it helped them make progress both when their primary intention for
their program was focused on the program and its structure and when their primary intention for their program was focused
on its behavior and output. They transitioned flexibly between modes throughout the programming process, in contrast
to the DM tool which enforced that edits start from a specific output manipulation.

Recall our focus on programming tools that don’t lead programmers astray. We emphasize tooling that keeps users informed
about the meaning of the current program and accepts all inputs users can share. Some lessons about program behavior
are easier to learn from reading the program, while others are easier to learn from seeing an execution or an output; this
drives our focus on letting users move flexibly across the first axis. Some corrections to program behavior are easier to express
in the program text, while others are easier to demonstrate by manipulating an output; this drives our focus on letting users
move flexibly across the second axis. It is the programming tool’s responsibility to keep the user informed so the user can
spot—and ultimately correct—divergence from their intended program behavior.

1.3 Using Human-Centered Work to Inform Novel PL

Outside of my own lab’s research, my most important role is to support the growing research subfield that sits at the
intersection of PL and HCI. In particular, since 2017 I am one of three co-organizers of PLATEAU, the biggest venue at
the intersection of PL and HCI. With co-chairs Joshua Sunshine and Elena Glassman, we’ve taken PLATEAU free-standing
over the past four years, where previously it was co-located either with a top PL or top HCI conference, depending on the
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Figure 1: My lab is engaged in a long-term project of exploring the
effectiveness of programming interactions that vary on two key axes:
(1) Edit Actions: Does the user manipulate the program by directly
manipulating the program or indirectly, by manipulating the program
output? (X-axis at left.) (2) Programmer Focus: Does the user focus
on the program or on the program output? (Y-axis at left.) Traditional
programming processes appear at the lower left. The top half of this space
remains dramatically underexplored—especially the portions of the space
where the programmer can manipulate both the output and the program
itself. Roughly, we can think of this top half of the space as corresponding
to programming interactions in which the programmer spends a minority
of their time thinking about the program structure. The figure illustrates
where a selection of my lab’s programming tools sit on these two axes,
including [13] described here and [9, 17] described in Sec 2.

year. Our first independent year was 2021, and we’ve now held well-attended independent PLATEAUs in a range of locations,
including one here on the Berkeley campus. We’ve made many improvements to PLATEAU, mostly centered around growing
the community and improving mentoring. We’ve seen a spike in PL-HCI hiring over the last few years. These new junior
faculty interacted with PLATEAU en route to becoming faculty, and most continue to engage.

The tide of PL-HCI research continues to rise, and in particular the PL community is adopting more and more HCI techniques.
Many, many researchers’ works and efforts are driving this evolution. I am happy to hear from junior and senior colleagues
alike that my lab’s work is playing a role. Sometimes junior researchers point to the works one might expect; e.g., “PL and
HCI, Better Together” [1] explicitly lays out the case for how PL can benefit from HCI insights and techniques. But often they
point to less expected papers; for instance, many researchers tell me reading “How Statically Typed Functional Programmers
Write Code” [7] was the experience that persuaded them they needed to integrate HCI work into their PL research practice.

To illustrate a concrete change in the PL community, consider the new prevalence of need-finding research. When a PhD student
enters my lab, we often start by building an understanding of the needs of a particular programming audience. This kind of re-
search is typically called need finding in HCI, and—until recently—it tended to be rare in PL. We use need-finding work to shape
our choices about the tools that we build for a given audience of coders or non-coders. We have conducted need-finding work to un-
derstand: users who work with geospatial data, with a special focus on geographers, data journalists, and social scientists [16]; cli-
mate economists and others who work with climate economics models [14]; novice synthesizer users [5]; statically typed functional
programming experts [7]; knowledge network content creators who use low-resourced languages [10]; stakeholders in the criminal
justice space, including lawyers and journalists [11]; and sociologists [4]. In some cases, the population is so understudied that we
need a large-scale need-finding study to build enough knowledge to start selecting research problems. In these cases, we typically
publish a free-standing need-finding work. In other cases, when we start with a base of knowledge about the population in ques-
tion, we can conduct smaller need-finding studies, which we often integrate as a small component of a primarily tool-focused paper.
In all cases, we use the need-finding work to inform our choice of research problem and the design of our programming tools.

Importantly, my lab has uncovered our most interesting research problem statements by using HCI techniques. Both of
the two preceding themes (edit-centric programming; output- vs. structure-guided programming) arose from user studies.
Many of our user study findings are specific to a given setting—e.g., see Section 2.1 for a research challenge we uncovered
only via long-running collaboration with experimental biologists. However, my lab also benefits from running so many studies
with so many very different audiences. We can identify the patterns that occur repeatedly across audiences, regardless of
participants’ disciplinary backgrounds and styles of computing education. Need-finding, formative, and evaluative user studies
alike have reinforced the importance of the lessons from Sections 1.1 and 1.2. We see these same themes arising, again and
again, across a diverse array of disciplines and programming tasks.

1.4 Impact Outside of Computing

My lab is deeply committed to impact on domains outside of computing. So far, we have released new programming tools for
domain experts including: geographers, cartographers, and data journalists [17]; biologists [9, 8]; attorneys and journalists [11];
artists [13]; and sociologists [4]. We have also proposed directions for improving existing programming tools for data scientists [12]
and climate economists [14]. Because of our close collaborations with domain experts outside of computing, we also publish with
domain experts, both inside computing [11, 4] and outside computing—e.g., recently with our Biology collaborators in Nature
Communications [15] and various Sociology venues [3, 2, 6]. My lab also builds programming tools for non-academic audiences.
For example, one of the tools described in Section 2 has been adopted by data journalists at several national newsrooms.

2 Two Case Studies: Analyzing and Visualizing Wet-Lab Biology Data & Authoring Interactive Maps

For concrete illustrations of the research themes, I’ll describe two projects in more detail.
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Figure 2: Two rounds of a Programming by Navigation Interaction. Round 1: At each round of synthesis, we have a sketch (an
in-progress program, depicted as an orange circle), which is initially empty. In this scenario, there are 5 valid synthesis solutions (depicted as
green stars). Given a sketch, a PBN synthesizer must return all steps on paths that lead to valid solutions (depicted as purple arrows, annotated
σA, σB, and σC), a property we call Strong Completeness. In addition, the synthesizer must not return any steps that cannot lead to a valid
solution (depicted as arrows with red ×s), a property we call Strong Soundness. Round 2: We depict the result of selecting the particular
step σA (although the others would have been valid to select as well). The step σA gets applied to the previous sketch, resulting in a new sketch,
and the PBN synthesizer must again return all and only the valid next steps; now σD leads to Solution 1 and σE leads to Solution 2.

2.1 Biology Case Study: An Interactive Program Synthesizer That Doesn’t Let You Go Wrong

During my student’s two years of embedding with a team of wet-lab biologists, we realized two things: (1) Any program
authoring tool for our biology collaborators must prevent them from taking a ‘wrong step’ at every point during program
creation. (2) Any program authoring tool must preemptively inform them of all possible ‘correct steps,’ lest they lack
knowledge of the full set of computational biology algorithms available for analyzing their data. No such program authoring
tool existed, so we set out to invent one.

Unfortunately for the creators of program synthesis tools, real programmers usually start the programming process with
an underspecification—that is, an ambiguous specification. If they use a synthesis tool, this means they usually engage in
a back and forth with the synthesizer, iteratively refining their specification until they’re happy with the program they get
back. This is common knowledge, but most existing synthesis work treats the synthesis process as a one-shot interaction
in which the user provides the correct specification, and the synthesizer runs once. In particular, most synthesis works only
provide soundness and completeness guarantees about this one-shot execution, not about the interaction as a whole. A few
prior works offer guarantees about the iterative specification refinement process—but they do it, not by making guarantees
about how the synthesizer will behave, but by making assumptions about how the user will behave.

We introduced the Programming by Navigation (PBN) Synthesis Problem, a new synthesis problem adapted specifically
for supporting iterative specification refinement in order to find a particular target solution even when the user starts with an
underspecification. In contrast to prior work, we prove that synthesizers that solve the Programming by Navigation Synthesis
Problem show all valid next steps (Strong Completeness) and only valid next steps (Strong Soundness). In short,
this is a program synthesis tool that doesn’t let the programmer mess up! There is no way to use a PBN synthesis tool to
reach an invalid program or to waste time going down a path on which no valid programs are accessible. (See Figure 2.)
This eliminates important classes of bad interactions, not by making assumptions about users, but by ensuring that the
tool itself only offers ‘good paths.’ In particular, it is impossible for the user to go down rabbit holes or to make an initially
valid specification into an invalid specification. As an analogy, we can think of a PBN synthesizer as serving a similar role
to a structure editor or projectional editor; but where a structure editor prevents users from taking syntactically invalid
steps, PBN program authoring prevents users from taking semantically invalid steps.

At first glance, it may sound as though the only way to implement a PBN synthesizer is by identifying all valid programs
in advance. In fact, this approach is impossible, because there may be infinite valid programs. Instead, we introduced an
algorithm to turn a type inhabitation oracle (in the style of classical logic) into a fully constructive program synthesizer.
We defined such an oracle via sound compilation to Datalog. This technique produced an efficient PBN synthesizer that
solves tasks that are either impossible or too large for baselines to solve. Our synthesizer was the first to guarantee that its
specification refinement process satisfies both Strong Completeness and Strong Soundness—that is, it meets requirements
(1) and (2) that we identified through my student’s work with biologists!

This technique is exactly the innovation we needed to meet the biologists’ needs—but also turns out to be broadly applicable.
With a library of allowable building blocks, essentially a set of compbio algorithms, our PBN implementation generates Python
scripts for analyzing or visualizing data from wet-lab biology experiments. We can apply the same synthesis framework,
and even the same implementation, to another domain by simply providing a different library of allowable building blocks.

This work started with the heaviest-weight need-finding process I’ve ever seen from a PL student, Justin Lubin’s deep two-year
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Figure 3: The patch-recon approach applied to
a geospatial visualization program. (A) A GUI
interaction creates a diff. The system uses the diff

for (1) the patch operation, which receives two inputs,
the diff and the current program P and (2) the recon
operation, which also receives two inputs, the diff and
the current output value V . (B) When patch applies the
diff to program P , it produces the updated program
P ′. When recon uses the diff to update V , it produces
the updated output value, V ′. The program is never
forward evaluated to produce the updated output map,
even when the map representation in V is quite different
from the map representation in V ′—as in this example,
which shows a transition from using a polygon mark to
a proportional symbol mark to represent a given dataset.

embedding in James Nuñez’s biology lab. So far, this long-term collaboration with biologists has produced two novel synthesis
techniques, the PBN technique described above and presented at PLDI 2025 [9], and a technique based on canonicalization
and creatively reusing the long history of compiler optimizations, presented at PLDI 2024 [8]. It has also resulted in a joint
publication with our biology collaborators in Nature Communications [15].

Themes This project connects with all four research themes: Navigating the Space of Programs. This is the core of Pro-
gramming By Navigation, and of course explains the name of our technique. The synthesis tool provides the steps by which the
user can navigate the space, the program edit actions that link the current sketch to the adjacent nodes in the program space. The
user navigates by picking the specific step from the allowable options. Program vs. Program Output. Recall that the PBN
infrastructure bears the responsibility of checking for the validity of any composition of building blocks. The programmer picks
which building blocks they like, but they never have to think about how to integrate them, about the program structure or control
flow. Instead the user states facts about the input—e.g., how their data was collected from a wet-lab experiment—and facts about
the output—e.g., the kind of analysis that should result. The end result is a programming tool that nudges users to reason about
outputs even though it often takes weeks to run a wet-lab analysis and find its output. HCI Techniques in PL. We invented the
Strong Soundness and Strong Completeness guarantees after realizing that these were the specific guarantees we’d need to make
biologists successful. Just as all prior interactive synthesis works hadn’t delivered Strong Soundness and Strong Completeness, we
probably would have overlooked the need for these guarantees if we had not conducted the necessary need-finding work in advance.
We decided to pursue Strong Soundness based on the need-finding work, but we can only study its impact on users once we’ve
invented a tool that achieves the guarantee. In the next stage of this research, we will study whether Strong Soundness, which
no prior program synthesis tool has ever provided, will benefit users as we predict. The analogous questions for structure editors,
about the impact of restricting programmers to syntactically valid programs, has already been studied extensively for over a
decade, across dozens of user studies. However, because there has never before been a synthesis tool that guarantees Strong Sound-
ness, this question has never been studied for semantic validity. Impact Outside Computing. Finally, our PBN tool is being
adopted in UC Berkeley and UCSF, and we will teach it at upcoming events at the San Francisco CZ Biohub and other venues.

2.2 Cartography Case Study: Direct Manipulation Programming For Big, Data-Intensive Programs

Many users continue to prefer Direct Manipulation (DM) interfaces as their primary way of interacting with computers.
Although there are few DM programming tools, most of the applications and webpages we use in our day-to-day computer
usage are DM—if it’s not happening at the command line or in a text editor, it’s probably DM. Clearly, DM GUIs are much
more mainstream and familiar than any program generation tools.

On the surface, it’s alluring to think we could give users a DM GUI for building up a concrete value, then automatically generate
a program that produces that concrete value as output. This would give users a way to write programs without directly writing
code, by using the familiar GUI-style interactions they know from mainstream direct manipulation interfaces. The stumbling
block appears when we try to apply this strategy to the long-running programs that real users want. To date, there are a few
DM programming systems, all of which use two main components: (1) a patch component, which modifies the program based on
a GUI interaction, and (2) a forward evaluator, which evaluates the modified program to produce an updated program output.
This architecture works for developing short-running programs—programs that reliably execute in <1 second—generating
outputs such as SVG and HTML documents. However, forward evaluating longer-running programs such as data visualizations
in response to every GUI interaction would mean crossing outside of interactive speeds. We extended DM programming to long-
running programs by pairing a standard patch component with a corresponding reconciliation component, recon. recon directly
updates the program output in response to a GUI interaction, eliminating the need for forward evaluation (Figure 3). recon can
operate both incrementally and in parallel with patch. Empirically, the longer a program takes to run with forward evaluation,
the greater the speedup we see from using our patch-recon approach instead. This architecture is easier for developers to
reason about (and prove correct) than techniques based on cache invalidation. This work offered the first pathway for extending
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direct manipulation programming to domains involving large-scale computation. Now that our patch-recon strategy extends
DM interfaces to desirable, long-running programs, and given that we know users are comfortable using DM GUIs in many
domains, adding program authoring into familiar, existing DM GUIs is a promising route for truly democratizing programming.

As part of this project, my student Parker Ziegler has been working for a year with Grist, a news outlet focused on climate
change reporting. He has co-won a journalism award for his work there. However, the impact is not limited to our direct
collaborators. Recently, he attended a data journalism conference, NICAR. He learned that news outlets including The
New York Times, The Washington Post, and Financial Times had independently found and used Cartokit, our patch-recon
tool for programming interactive maps.

This work started with need-finding research studying Earth and climate scientists, social scientists, and data journalists,
presented at CHI 23 [16]; progressed to introducing the patch-recon DM programming approach presented at PLDI 25 [17];
and has now proceeded to producing a suite of related cartography tools including a pure-DM tool and a hybrid DM-LLM
tool, in which we can trigger recon either with GUI interactions or with natural language descriptions of the desired change.

Themes This project connects with all the research themes highlighted above: Navigating the Space of Programs. The
diffs that we feed to patch and recon are the key object of study here. While it is standard to apply diffs to program
text, recon is a way to give semantics to program diffs. patch-recon turns the process of engineering a DM programming
environment into essentially an exercise in deciding the set of allowable diffs, the set of allowable program edits, by which
the programmer will be allowed to navigate the space of programs. Notably, the only reason a patch-recon architecture
improves performance relative to forward evaluation is because the DM programming process proceeds via a sequence of
program edits, with opportunities to avoid redundant computation. Program vs. Program Output. The other core
appeal of DM interactions—other than the focus on building outputs via incremental output edits—is the focus on building
outputs in general. From the start, the goal of a DM programming system is to give the programmer the flexibility to make
edits either by altering the program directly or by altering the output to indirectly edit the program. HCI Techniques
in PL. Our need-finding work with users of Geospatial Information Systems and geospatial analysis libraries [17] was the
driving force behind Cartokit. Our results indicated that practitioners who used only DM (non-programming) tools struggled
with tasks that programs could solve for them—e.g., tediously repeating the same mapping process for multiple datasets.
In contrast, practitioners who used only programming tools struggled with tasks that DM tools could solve for them—e.g.,
rapid exploration of multiple different cartographic representations. In fact, we even found that many users already switched
back and forth between DM and programming tools in their processes, even though they had to completely throw away their
DM result to use programming or throw away their program to use DM. Impact Outside Computing. As described above,
even though Cartokit is brand new, it has already been organically discovered by data journalists at national newsrooms
including the New York Times and the Washington Post, as well as interactive mapmakers outside of journalism.

2.3 The Future of Programming

I’ll conclude with closing thoughts on how my lab’s work connects to the future of programming.

On AI for Non-Programmers Generative AI has become an important tool in our toolbox for building programming
aides. (E.g., see Sec 2.) In isolation, generative AI supports non-traditional programmers in producing code in limited settings:
roughly, the same situations in which they could cobble the program together by Googling, plus the situations most similar
to those. In other settings, especially for difficult domain-specific code, LLMs alone are a poor fit for non-programmers
because: 1. Problem decomposition is hard for non-programmers, novice programmers, and LLMs alike. 2. Coders
and non-coders use different concepts and words in natural language. In an LLM setting, since non-programmers’
text doesn’t appear alongside code in LLM training sets, their natural language often doesn’t produce useful results from
LLMs. 3. Non-programmers may not be able to read traditional programs. Thus, they may not be able to identify
whether LLM-produced code does what they want. 4. Identifying a next step is hard. Even if a user can understand their
LLM-produced code enough to know it’s wrong, they often don’t know how to tweak the code, the prompt, or other inputs
in ways that will force their desired behavior. 5. Deciding what they want is hard. Put another way, navigating the space
of specifications is hard. Programmers (often) find it easy to produce code once they have a full specification in mind. Much
harder is reaching the point of having a full specification; much of the programming process is about refining the specification,
the programmer figuring out what they want. User studies show LLMs make both programmers and non-programmers worse
at this process. • The five challenges above are exactly the challenges that programming tools for domain experts have been
supporting from the start, long before LLMs arrived on the scene. These were always the parts of the programming process
that were hardest, and always the reason why we’ve had to design custom abstractions, environments, and drafting tools
for non-programmer domain experts. In short, LLMs have provided a very useful building block for many new programming
tools, but surprisingly the fundamental challenges of navigating non-coders to difficult programs have remained remarkably
stable—even as LLMs have triggered a massive shift away from search engines and towards LLM-backed tools. With the
tremendous surge of interest in LLM-backed programming, I’m optimistic that the community will make much faster progress
on these five challenges. Our work for domain experts will benefit from the insights this upswell of interest will generate—and,
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in turn, our growing body of work offers important lessons for LLM-backed tools on how to overcome these challenges.

Domain Experts and the Future of Programming Programs that shape our daily lives—setting price thresholds
for housing voucher programs, the data analysis behind the next medical breakthrough CRISPR-based therapy—are being
written by non-programmers. Domain experts are writing programs that can help or harm whole communities. With
programs only a chat away, code feels more accessible to more populations than ever before. Whether this trend results
in more harm or more good will come down to one question: How well do programming tools support real domain experts
in producing correct programs? Without formal computing educations, practitioners need to write, edit, understand, and
debug a wide range of deeply difficult programs. We cannot assume a four-year CS education that teaches them the same
concepts, skills, and background knowledge that software engineers share. Likewise, we cannot assume the trivial, prepackaged
programming tasks that so many expert-targeted tools try to enforce. Our next generation of programming tools must be
designed with a deep understanding of domain experts’ real programming practices—and how our tools can help them or
lead them astray. My lab’s work shows that when we design programming tools from the start to meet practitioners’ needs,
we find fascinating new research problem statements. But more importantly, we invent tools that make domain experts
more capable and more correct. At its best, this work isn’t about individual productivity or ease, but about expanding
the collective problem-solving capabilities of whole disciplines. With this perspective, PL for domain experts sits right at
the core of the future of programming tools. The PL work happening right now will determine whether the next generation
sees programming as a path to a more informed and evidence-driven society—or just a way to get wrong answers faster.
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