Synthesis

CS294-184: Building User-Centered Programming Tools UC Berkeley Sarah E. Chasins

Program Synthesis Week 2, Day 1

Reading Reflection

Discuss in groups

® So far, do you find enumerative search (tracking the subset of the
program space explored so far) more natural? Or symbolic search
(representing the space of all valid programs)?

® How are you teeling about viewing programs as manipulable objects
rather than text?
® Have you thought before about the fact that programs themselves

are also data and can be treated as inputs to other programs?

Reading Key Takeaways

® [nductive reasoning makes broad generalizations from specitic
observations
® — inductive synthesis is about generalizing from ambiguous

specifications

® The difference between tfinding a program that satisfies the spec and
finding the program the user actually wants

® A nice review of ASTs and the importance ot the DSL design for the
program space size (although we touched on these in last class)

® A friendly introduction to symbolic search (representing the space of all
valid programs instead of tracking the subset of programs explored so

tar)

Enumerative = Symbolic (Constraint-
Based)

The Rosette Language

ABOUT DOWNLOAD DOCS APPS COURSES PAPERS

A brilliant language from

Emina Torlak

About Rosette

Rosette is a solver-aided programming language that extends Racket with language
constructs for program synthesis, verification, and more. To verify or synthesize code,
Rosette compiles it to logical constraints solved with off-the-shelf SMT solvers. By
combining virtualized access to solvers with Racket's metaprogramming, Rosette
makes it easy to develop synthesis and verification tools for new languages. You simply
write an interpreter for your language in Rosette, and you get the tools for free!

#lang rosette

(define (interpret formula)

(match formula

[(A ,expr ...) (apply && (map interpret expr))]
["(V ,expr ...) (apply || (map interpret expr))]
[(— ,expr) (! (interpret expr))]

[lit (constant 1lit boolean?)]))

't you want to get really into
Rosette, | recommena...

® https://courses.cs.washington.edu/courses/cse507/1%au/
index.htm|

| et’s tour Rosetteland!

® Can you run this program in DrRacket? Please try to help each other
debug it you can't!

#lang rosette/safe

(require rosette/lib/synthax)
(current-bitwidth #f)

(1) individual Rosette intro activity
(2) group Rosette activity

What did you learn from the Rosette
activity?

A tew learning goals

You might have learned...
® That you can write a synthesizer!
® That there are many possible ways of designing the

grammar, many possible ways of designing the spec P\
. , | /{ ®) \ S'r:riram you actually
® A visceral understanding of the difference between finding | rogamsmacng))

, Space of (the observationj/
\ programs

a program that meets your spec and the program you SO

\ 4
\
f
J

J

’ \
II
J

J

/

actually want. :) Especially in example-based specs. N

® The limits of what you can control in Rosette. T

https://people.csail.mit.edu/asolar/SynthesisCourse/Lecture2.htm

Armando Solar-Lezama

https://people.csail.mit.edu/asolar/SynthesisCourse/Lecture2.htm

One (of many) solutions

(define-synthax (is-title x depth)
#:base (choose #t #f)
#:else (choose
#t #f
(if ((choose < >) ((choose get-font-size get-num-words) x) (?7))
(is-title x (- depth 1))
(is-title x (- depth 1)))))

(define (is-title-synthesized x)
(is-title x 1))

(define-symbolic i integer?)
(print-forms
(synthesize
#:forall (list i)
#:quarantee (assert (or
(< i 0)
(>= i (length texts))
(equal? (is-title-synthesized (list-ref texts 1)) (get-is-title (list-ref texts 1i)))))))

Welcome to DrRacket, version 7.8 [3m].
Language: rosette/safe, with debugging; memory limit: 256 MB.
20

450
#f
/Users/schasins/Documents/titleDetection.rkt:49:0

'(define (is-title-synthesized x) (if (> (get-font-size x) 31) #t #f))
>

kdefine texts

[list (list 20 450 #f) (list 30 1200 #f) (list 70 4 #t) (list 72 9 #t) (list 9 4 #f) (list 72 200 #f)])

(define (get-font-size t)
(list-ref t 0))

(define (get-num-words t)
(list-ref t 1))

(define (get-is-title t)
(list-ref t 2))

(get-font-size (list-ref texts 0))
(get-num-words (list-ref texts 0))
(get-is-title (list-ref texts 0))

; Now write a synthesizer that can learn a program for labeling texts as titles
; or not titles based on the examples in our texts list.

; Hint: if you end up using the #:forall (list i) approach in your solution,
; remember that i1 can be less than @ and greater than the length of the texts
: list,

; Defines a grammar
(define-synthax (is-title x depth)
#:base (choose #t #f)
#:else (choose
#t #f
(if ((choose < =) ((choose get-font-size get-num-words) x) (?77))
(is-title x (- depth 1))
(is-title x (- depth 1)))))

(define (is-title-synthesized x)
(is-title x 2))

(define-symbolic i integer?)
(print-forms
(synthesize
#:forall (list i)
#:quarantee (assert (or
(< i 0)
(>= 1 (length texts))

And this is adaptable as we
get more complicatea
inputs from our user...

Original input-output pairs
(list 20 450 #f) (list 30 1200 #f) (list 70 4 #t)
Here we add 3 more

(list 72 9 #t) (list 9 4 #f) (list 72 200 #f)])
mavbe a footnote maybe a pull-out
quote

The same synthesizer now produces:

'(define (is-title-synthesized x)
(if (< (get-font-size x) 69) #f (if (< (get-num—words x) 200) #t #f)))

(equal? (is-title-synthesized (list-ref texts i)) (get-is-title (list-ref texts i)))))))

Welcome to DrRacket, version 7.8 [3m)].
Language: rosette/safe, with debugging; memory limit: 256 MB.

20
450
#f
/Users/schasins/Documents/titleDetection.rkt:49:0
'(define (is-title-synthesized x)
(if (< (get-font-size x) 69) #f (if (< (get-num-words x) 200) #t #f)))

(define (hole depth arity non-terms terms)
.) ; Expression hole (Section 2.2)

(define (Faiglave ppo grf fences)
.) ; Axioms from Figure 4

; Common components of memory model specifications
(define (SameAddr X) (& (-> X X) (join loc (~ loc))))
(define rfi (& rf (join thd (~ thd))))

(define rfe (- rf (join thd (~ thd))))

Rosette for more realistic tasks...

; Expression holes for Faiglave model (Section 3.2)
(define ppo
(hole 4 2 (list + - -> & SameAddr)

— . p— -
s g . _-7 4 /({ o 4 a
7 el SN O s 2 3
g A y - Vas
L.
¥ o]
- $4 J

R G

-,

R

(list po dep Event Read Write Fence Atomic)))
(define grf (hole 4 2 (list + - -> & SameAddr)
(list rf rfi rfe none univ)))
; X86 fences are not cumulative
(define fences (-> none none))

R

—

:..-)C‘: ./,'«:
T 74
, # S
7 7,

; Final sketch y *£T:Z%L
(define x86-sketch (Faiglave ppo grf fences)) Jﬂ&ai ﬁ
“ny I nthesizing Memory Models from
(a) Framework sketch Fajgaye Sy 8 y :
A _ Framework Sketches and Litmus Tests
zdziizgepg;jamblguatlon 1-.;121 if; & — ;‘ James Bornholt =~ Emina Torlak
(& po (- (-> Event (+ Write Read)) "j:;,"_\f\;_{'*,>jég & X TV Y University of Washington, USA

(-> (- Write Atomic) Read))))
(define grfg (- rf (join thd (~ thd))))
(define TSOp (Faiglave PPOe grfe fences))

; After resolving 4 ambiguities

(define ppos (- po (-> (- Write Atomic) Read)))
(define grf; (- rf (join thd (~ thd))))

(define TSO; (Faiglave Ppos grfs fences))

(b) Synthesized models 7SOy and TSO4

Figure 9. The framework sketch Fjjgjave for synthesizing a
memory model for the x86 architecture (a), and synthesized
models 7SOq and TSO4 before and after resolving ambigui-
ties (b). The expression holes for ppo and grf define a search
space of size 2924, as described in Figure 8. The fences rela-
tion is empty because x86 fences are not cumulative.

{bornholt, emina}@cs.washington.edu

Abstract

A memory consistency model specifies which writes to shared
memory a given read may see. Ambiguities or errors in these
specifications can lead to bugs in both compilers and applica-
tions. Yet architectures usually define their memory models
with prose and litmus tests—small concurrent programs that
demonstrate allowed and forbidden outcomes. Recent work
has formalized the memory models of common architectures
through substantial manual effort, but as new architectures
emerge, there is a growing need for tools to aid these efforts.

This paper presents MemSynth, a synthesis-aided sys-
tem for reasoning about axiomatic specifications of memory
models. MemSynth takes as input a set of litmus tests and
a framework sketch that defines a class of memory models.
The sketch comprises a set of axioms with missing expres-
sions (or holes). Given these inputs, MemSynth synthesizes
a completion of the axioms—i.e., a memory model—that
gives the desired outcome on all tests. The MemSynth engine

1. Introduction

Reasoning about concurrent code requires a memory con-
sistency model that specifies the memory reordering behav-
1ors the hardware will expose. Architectures typically define
their memory consistency model with prose and litmus tests,
small programs that illustrate allowed and forbidden out-
comes. These imprecise definitions make reasoning about
correctness difficult for both developers and tool builders.
Researchers have therefore argued for formalizing memory
models [49], and have recently created formal models for
common architectures, including x86 [40] and PowerPC [30].
But each such formalization required several person-years of
effort and several revisions (e.g., [5, 6, 35, 38, 39]).

These formalization efforts have been aided by tools for
verification and comparison of memory models. Verification
tools check whether a model allows a litmus test [6, 36, 45],
while comparison tools synthesize litmus tests on which two
models disagree [28, 47]. These tools provide verification and

D001 ONUT W WD =

45
46
47
43
49

50
51

52

53
54

55
56

57

58
59

60

61
62

Figure 4. A ToyRISC interpreter using Serval (in Rosette).

#lang rosette

; import serval core functions with prefix "serval:"
(require (prefix-in serval: serval/lib/core))

; Cpu state: program counter and integer registers
(struct cpu (pc regs) #:mutable)

; interpret a program from a given cpu state
(define (interpret c program)
(serval:split-pc [cpu pc] ¢
: fetch an instruction to execute
(define insn (fetch c¢ program))
. decode an instruction into (opcode, rd, rs, imm)
(match insn
[(list opcode rd rs imm)
: execute the instruction
(execute ¢ opcode rd rs imm)
; recursively interpret a program until
(when (not (equal? opcode 'ret))
(interpret c program))1)))

ret”

: fetch an instruction based on the current pc
(define (fetch ¢ program)
(define pc (cpu-pc ¢))
: the behavior is undefined if pc is out-of-bounds
(serval:bug-on (< pc 8))
(serval:bug-on (>= pc (vector-length program)))
» return the instruction at program[pc)
(vector-ref program pc))

; shortcut for getting the value of register rs
(define (cpu-reg ¢ rs)
(vector-ref (cpu-regs c) rs))

; shortcut for setting register rd to value v
(define (set-cpu-reg! c rd v)
(vector-set! (cpu-regs c) rd v))

; execute one instruction
(define (execute ¢ opcode rd rs imm)
(define pc (cpu-pc c¢))
(case opcode
[(ret) ; return
(set-cpu-pc! ¢ 9)]
[(bnez) ; branch to imm if rs is nonzero
(if (! (= (cpu-reg c rs) 9))
(set-cpu-pc! ¢ imm)
(set-cpu-pc! ¢ (+ 1 pc)))]
[(sgtz) ; set rd to 1 if rs > @, @ otherwise
(set-cpu-pc! ¢ (+ 1 pc))
(if (> (cpu-reg c rs) 0)
(set-cpu-reg! c rd 1)
(set-cpu-reg! ¢ rd 9))]
[(sltz) ; set rd to 1 if rs < @, @ otherwise
(set-cpu-pc! ¢ (+ 1 pc))
(if (< (cpu-reg c rs) 0)
(set-cpu-reg! c rd 1)
(set-cpu-reg! ¢ rd 9))]
[(11) - load imm into rd
(set-cpu-pc! ¢ (+ 1 pc))
(set-cpu-reg! ¢ rd imm)]))

Rosette 1

or more realistic tasks...

Scaling symbolic evaluation for automated
verification of systems code with Serval

Luke Nelson James Bornholt Ronghui Gu
University of Washington University of Washington Columbia University
Andrew Baumann Emina Torlak Xi Wang
Microsoft Research University of Washington University of Washington

Abstract

This paper presents Serval, a framework for developing au-
tomated verifiers for systems software. Serval provides an
extensible infrastructure for creating verifiers by lifting in-
terpreters under symbolic evaluation, and a systematic ap-
proach to identifying and repairing verification performance
bottlenecks using symbolic profiling and optimizations.
Using Serval, we build automated verifiers for the RISC-V,
x86-32, LLVM, and BPF instruction sets. We report our ex-
perience of retrofitting CertiKOS and Komodo, two systems
previously verified using Coq and Dafny, respectively, for
automated verification using Serval, and discuss trade-offs
of different verification methodologies. In addition, we apply
Serval to the Keystone security monitor and the BPF compil-
ers in the Linux kernel, and uncover 18 new bugs through
verification, all confirmed and fixed by developers.

ACM Reference Format:
Luke Nelson, James Bornholt, Ronghui Gu, Andrew Baumann, Em-
ina Torlak and X1 Wane 2019 Scaline svmbolic evaluation for

But the benefits of formal verification come at a consider-
able cost. Writing proofs requires a time investment that is
usually measured in person-years, and the size of proofs can
be several times or even more than an order of magnitude
larger than that of implementation code [49: §7.2].

The push-button verification approach [65, 74, 75] frees
developers from such proof burden through co-design of
systems and verifiers to achieve a high degree of automation,
at the cost of generality. This approach asks developers to
design interfaces to be finite so that the semantics of each in-
terface operation (such as a system call) is expressible as a set
of traces of bounded length (i.e., the operation can be imple-
mented without using unbounded loops). Given the problem
of verifying a finite implementation against its specification,
a domain-specific automated verifier reduces this problem
to a satisfiability query using symbolic evaluation [32] and
discharges the query with a solver such as Z3 [31].

While promising, this co-design approach raises three
open questions: How can we write automated verifiers that

1 1 ™ s

Reflections on Rosette

® Concise program -> quite complex and sophisticated
synthesizers

® Opacity

® Control

quick prep for next session

To think about for next reading

® You do not need to memorize or deeply understand details of
these approaches!
® | want you to recognize the key terms and know where to
turn for a high-level overview of key techniques. Also, this
chapter offers excellent pointers to examples of synthesis
work, which you might find useful it you start tackling a
synthesis project.
® Think about
® How these different approaches would or wouldn’t apply
to the synthesis ideas you brainstormed last session
® How these different approaches shape the user interaction

Install before next class:
/3 SMT solver

We'll use the Python Z3 bindings. First make sure you have Python installed. Then install
the Z3 bindings. (https://pypi.org/project/z3-solver/)

pip install z3-solver

pip i1nstall z3-solver --user

Then make sure you can run this program, which I'll also upload in Slack.

from z3 1mport *

X = Int('x")
y = Int('y"')
solve(x > 1, v >1, x *y + 3 == 17)

