
Synthesis

CS294-184: Building User-Centered Programming Tools UC Berkeley Sarah E. Chasins
Program Synthesis Week 2, Day 1

Reading Reflection
Discuss in groups
• So far, do you find enumerative search (tracking the subset of the

program space explored so far) more natural? Or symbolic search
(representing the space of all valid programs)?

• How are you feeling about viewing programs as manipulable objects
rather than text?
• Have you thought before about the fact that programs themselves

are also data and can be treated as inputs to other programs?

Reading Key Takeaways
• Inductive reasoning makes broad generalizations from specific

observations
• → inductive synthesis is about generalizing from ambiguous

specifications
• The difference between finding a program that satisfies the spec and

finding the program the user actually wants
• A nice review of ASTs and the importance of the DSL design for the

program space size (although we touched on these in last class)
• A friendly introduction to symbolic search (representing the space of all

valid programs instead of tracking the subset of programs explored so
far)

Enumerative → Symbolic (Constraint-
Based)

A brilliant language from
Emina Torlak

If you want to get really into
Rosette, I recommend…

• https://courses.cs.washington.edu/courses/cse507/19au/
index.html

Let’s tour Rosetteland!

• Can you run this program in DrRacket? Please try to help each other
debug if you can’t!
• #lang rosette/safe

(require rosette/lib/synthax)
(current-bitwidth #f)

(1) individual Rosette intro activity
(2) group Rosette activity

What did you learn from the Rosette
activity?

A few learning goals

You might have learned…
• That you can write a synthesizer!
• That there are many possible ways of designing the

grammar, many possible ways of designing the spec
• A visceral understanding of the difference between finding

a program that meets your spec and the program you
actually want. :) Especially in example-based specs.

• The limits of what you can control in Rosette.
https://people.csail.mit.edu/asolar/SynthesisCourse/Lecture2.htm

Armando Solar-Lezama

https://people.csail.mit.edu/asolar/SynthesisCourse/Lecture2.htm

One (of many) solutions

And this is adaptable as we
get more complicated
inputs from our user…

Original input-output pairs

Here we add 3 more

The same synthesizer now produces:

maybe a footnote maybe a pull-out
quote

Rosette for more realistic tasks…

Rosette for more realistic tasks…

Reflections on Rosette

• Concise program -> quite complex and sophisticated
synthesizers

• Opacity
• Control

quick prep for next session

To think about for next reading

• You do not need to memorize or deeply understand details of
these approaches!
• I want you to recognize the key terms and know where to

turn for a high-level overview of key techniques. Also, this
chapter offers excellent pointers to examples of synthesis
work, which you might find useful if you start tackling a
synthesis project.

• Think about
• How these different approaches would or wouldn’t apply

to the synthesis ideas you brainstormed last session
• How these different approaches shape the user interaction

Install before next class:
Z3 SMT solver

We’ll use the Python Z3 bindings. First make sure you have Python installed. Then install
the Z3 bindings. (https://pypi.org/project/z3-solver/)

pip install z3-solver
OR
pip install z3-solver --user

Then make sure you can run this program, which I’ll also upload in Slack.

from z3 import *

x = Int('x')
y = Int('y')
solve(x > 1, y > 1, x * y + 3 == 7)

