
CHAPTER 11
DESIGN, PROTOTYPING, AND CONSTRUCTION

11.1 Introduction
11.2 Prototyping
11.3 Conceptual Design
11.4 Concrete Design
11.5 Using Scenarios
11.6 Generating Prototypes
11.7 Construction

Objectives

The main aims of this chapter are to:
Describe prototyping and different types of prototyping activities.
Enable you to produce simple prototypes from the models developed
during the requirements activity.
Enable you to produce a conceptual model for a product and justify
your choices.
Explain the use of scenarios and prototypes in design.
Introduce physical computing kits and software development kits, and
their role in construction.

00:00 / 00:00



11.1 Introduction
Design activities begin once some requirements have been established. The
design emerges iteratively, through repeated design–evaluation–redesign
cycles involving users. Broadly speaking, there are two types of design:
conceptual and concrete. The former is concerned with developing a
conceptual model that captures what the product will do and how it will
behave, while the latter is concerned with details of the design such as menu
structures, haptic feedback, physical widgets, and graphics. As design
cycles become shorter, the distinction between these two becomes blurred,
but they are worth distinguishing because each emphasizes a different set of
design concerns.
For users to evaluate the design of an interactive product effectively,
designers must prototype their ideas. In the early stages of development,
these prototypes may be made of paper and cardboard, or ready-made
components pulled together to allow evaluation, while as design progresses,
they become more polished, compact, and robust so that they resemble the

00:00 / 00:00

00:00 / 00:00



final product.

Broadly speaking, the design process may start from two distinct situations:
when starting from scratch or when modifying an existing product. Much of
design comes from the latter, and it is tempting to think that additional
features can be added, or existing ones tweaked, without extensive
investigation, prototyping, or evaluation. Although prototyping and evaluation
activities can be reduced if changes are not significant, they are still valuable
and should not be skipped.
In Chapter 10, we discussed some ways to identify user needs and establish
requirements. In this chapter, we look at the activities involved in progressing
a set of requirements through the cycles of prototyping to construction. We
begin by explaining the role and techniques of prototyping and then explain
how prototypes may be used in the design process. We end with an
exploration of physical computing and software development kits (SDKs) that
provide a basis for construction.

11.2 Prototyping
It is often said that users can't tell you what they want, but when they see
something and get to use it, they soon know what they don't want. Having
established some requirements, the next step is to try out design ideas
through prototyping and evaluation cycles.

11.2.1 What Is a Prototype?
A prototype is one manifestation of a design that allows stakeholders to
interact with it and to explore its suitability; it is limited in that a prototype will
usually emphasize one set of product characteristics and de-emphasize
others. When you hear the term prototype, you may imagine a scale model
of a building or a bridge, or a piece of software that crashes every few
minutes. A prototype can also be a paper-based outline of a display, a
collection of wires and ready-made components, an electronic picture, a
video simulation, a complex piece of software and hardware, or a three-
dimensional mockup of a workstation.
In fact, a prototype can be anything from a paper-based storyboard through
to a complex piece of software, and from a cardboard mockup to a molded
or pressed piece of metal. For example, when the idea for the PalmPilot was
being developed, Jeff Hawkin (founder of the company) carved up a piece of
wood about the size and shape of the device he had imagined. He used to
carry this piece of wood around with him and pretend to enter information



into it, just to see what it would be like to own such a device (Bergman and
Haitani, 2000). This is an example of a very simple (some might even say
bizarre) prototype, but it served its purpose of simulating scenarios of use.
Advances in 3D printer technologies, coupled with reducing prices, have
increased their use in design. It is now possible to take a 3D model from a
software package and print a prototype. Even soft toys and chocolate may
be ‘printed’ in this way (see Figure 11.1).



Figure 11.1 (a) Color output from a 3D printer: all the gears and rods
in this model were ‘printed’ in one pass from bottom to top, and
when one gear is turned, the others turn too. (b) James Bond's
Aston Martin in Skyfall was in fact a 3D-printed model
(http://www.telegraph.co.uk/technology/news/9712435/The-names-
Printing-3D-Printing.html). (c) A teddy bear ‘printed’ from a wireframe
design http://www.disneyresearch.com/project/printed-teddy-bears/
Source: (a) The Computer Language Company, Inc., courtesy of Alan Freedman (b) Courtesy
of voxeljet and Propshop Modelmakers Ltd (c) Courtesy of Scott Hudson, Human–Computer
Interaction Institute, Carnegie Mellon University.

Video showing a teddy bear being ‘printed’ is available at
http://www.disneyresearch.com/project/printed-teddy-bears/

11.2.2 Why Prototype?
Prototypes are useful when discussing or evaluating ideas with stakeholders;
they are a communication device among team members, and an effective
way for designers to explore design ideas. The activity of building prototypes
encourages reflection in design, as described by Schön (1983) and is
recognized by designers from many disciplines as an important aspect of
design.
Prototypes answer questions and support designers in choosing between
alternatives. Hence, they serve a variety of purposes: for example, to test
out the technical feasibility of an idea, to clarify some vague requirements, to
do some user testing and evaluation, or to check that a certain design
direction is compatible with the rest of product development. The purpose of
your prototype will influence the kind of prototype you build. So, for example,
if you want to clarify how users might perform a set of tasks and whether
your proposed design would support them in this, you might produce a
paper-based mockup. Figure 11.2 shows a paper-based prototype of a

http://www.telegraph.co.uk/technology/news/9712435/The-names-Printing-3D-Printing.html
http://www.disneyresearch.com/project/printed-teddy-bears/
http://www.disneyresearch.com/project/printed-teddy-bears/


handheld device to help an autistic child communicate. This prototype shows
the intended functions and buttons, their positioning and labeling, and the
overall shape of the device, but none of the buttons actually work. This kind
of prototype is sufficient to investigate scenarios of use and to decide, for
example, whether the button images and labels are appropriate and the
functions sufficient, but not to test whether the speech is loud enough or the
response fast enough. In the development of SITU, a smart food nutrition
scale and tablet application, a range of prototypes and representations were
used from initial idea to final product. These included screen sketches, paper
and cardboard mockups, wireframes, and many post-its.

Figure 11.2 A paper-based prototype of a handheld device to support
an autistic child
Source: Reprinted by permission of Sigil Khwaja.



Link to see the full story of SITU at
https://www.kickstarter.com/projects/situ/situ-smart-food-nutrition-scale

Saffer (2010) distinguishes between a product prototype and a service
prototype, where the latter involves role playing and people as an integral
part of the prototype as well as the product itself. Service prototypes are
sometimes captured as video scenarios and used in a similar way to the
scenarios introduced in Chapter 10.

11.2.3 Low-Fidelity Prototyping
A low-fidelity prototype does not look very much like the final product and
does not provide the same functionality. For example, it may use very
different materials, such as paper and cardboard rather than electronic
screens and metal, it may perform only a limited set of functions, or it may
only represent the functions and not perform any of them. The lump of wood
used to prototype the PalmPilot described above is a low-fidelity prototype.
Low-fidelity prototypes are useful because they tend to be simple, cheap,
and quick to produce. This also means that they are simple, cheap, and
quick to modify so they support the exploration of alternative designs and
ideas. This is particularly important in early stages of development, during
conceptual design for example, because prototypes that are used for
exploring ideas should be flexible and encourage exploration and
modification. Low-fidelity prototypes are not meant to be kept and integrated
into the final product. They are for exploration only.

Storyboarding.
Storyboarding is one example of low-fidelity prototyping that is often used in
conjunction with scenarios, as described in Chapter 10. A storyboard
consists of a series of sketches showing how a user might progress through
a task using the product under development. It can be a series of screen
sketches or a series of scenes showing how a user can perform a task using
an interactive device. When used in conjunction with a scenario, the
storyboard provides more detail and offers stakeholders a chance to role-
play with a prototype, interacting with it by stepping through the scenario.
The example storyboard shown in Figure 11.3 depicts a person (Christina)
using a new mobile device for exploring historical sites. This example shows
the context of use for this device and how it might support Christina in her
quest for information about the pottery trade at The Acropolis in Ancient

https://www.kickstarter.com/projects/situ/situ-smart-food-nutrition-scale


Greece.

Figure 11.3 An example storyboard for a mobile device to explore
ancient sites such as The Acropolis

Sketching.
Low-fidelity prototyping often relies on hand-drawn sketches, and many
people find it difficult to engage in this activity because they are inhibited
about the quality of their drawing, but as Greenberg et al (2012) put it,
“Sketching is not about drawing. Rather, it is about design” (p. 7). You can
get over any inhibition by devising your own symbols and icons and practicing
them – referred to by Greenberg et al as a ‘sketching vocabulary’ (p. 85).
They don't have to be anything more than simple boxes, stick figures, and
stars. Elements you might require in a storyboard sketch, for example,
include digital devices, people, emotions, tables, books, etc., and actions
such as give, find, transfer, and write. If you are sketching an interface
design, then you might need to draw various icons, dialog boxes, and so on.
Some simple examples are shown in Figure 11.4. The next activity requires
other sketching symbols, but they can still be drawn quite simply. Baskinger
(2008) provides further tips for those new to sketching.



Figure 11.4 Some simple sketches for low-fidelity prototyping

Prototyping with index cards.
Using index cards (small pieces of cardboard about 3 × 5 inches) is a
successful and simple way to prototype an interaction, and is used often
when developing websites. Each card represents a screen or one element of
the interaction. In user evaluations, the user can step through the cards,
pretending to perform the task while interacting with the cards. A more
detailed example of this kind of prototyping is given in Section 11.6.2.

Activity 11.1

Produce a storyboard that depicts how to fill a car with gas (petrol).

Comment
Show/Hide

Wizard of Oz.
Another low-fidelity prototyping method called Wizard of Oz assumes that
you have a software-based prototype. In this technique, the user interacts
with the software as though interacting with the product. In fact, however, a
human operator simulates the software's response to the user. The method
takes its name from the classic story of the little girl who is swept away in a



storm and finds herself in the Land of Oz (Baum and Denslow, 1900). The
Wizard of Oz is a small shy man who operates a large artificial image of
himself from behind a screen where no one can see him. The Wizard of Oz
style of prototyping has been used successfully for various applications,
including PinTrace, a robotic system that helps surgeons to position
orthopedic pins accurately during the surgery of hip fractures (Molin, 2004),
and to identify gestures for full body interaction with digital games (Norton et
al, 2010).

11.2.4 High-Fidelity Prototyping
A high-fidelity prototype looks like the final product and/or provides more
functionality than a low-fidelity prototype. For example, a prototype of a
software system developed in Visual Basic is higher fidelity than a paper-
based mockup; a molded piece of plastic with a dummy keyboard is a
higher-fidelity prototype of the PalmPilot than the lump of wood. High-fidelity
prototyping is useful for selling ideas to people and for testing out technical
issues.
High-fidelity prototypes can be developed by modifying and integrating
existing components – both hardware and software. In robotics this
approach has been called tinkering (Hendriks-Jansen, 1996) while in
software development it has been referred to as Opportunistic System
Development (Ncube et al, 2008). Banzi (2009) comments that: “Reusing
existing technology is one of the best ways of tinkering. Getting cheap toys
or old discarded equipment and hacking them to make them do something
new is one of the best ways to get great results.” Bird et al (2009) describe
how they used this approach to develop a tactile vision sensory substitution
system, i.e. a system that translates a camera image of the user's
environment into tactile stimulation on their body.

11.2.5 Compromises in Prototyping
By their very nature, prototypes involve compromises: the intention is to
produce something quickly to test an aspect of the product. Lim et al (2008)
suggest an anatomy of prototyping that structures the different aspects of a
prototype and what it aims to achieve. Their ideas are expanded in Box 11.1.
The kind of questions that any one prototype can answer is limited, and the
prototype must be built with the key issues in mind. In low-fidelity
prototyping, it is fairly clear that compromises have been made. For
example, with a paper-based prototype an obvious compromise is that the
device doesn't actually work! For software-based prototyping, some of the
compromises will still be fairly clear; for example, the response speed may



be slow, or the look and feel may not be finalised, or only a limited amount of
functionality may be available.

BOX 11.1

The Anatomy of Prototyping: Filters and Manifestations
Lim et al (2008) propose a view of prototypes which focuses on their
role as filters, i.e. to emphasize specific aspects of a product being
explored by the prototype, and as manifestations of designs, i.e. as tools
to help designers develop their design ideas through external
representations.
They suggest three key principles in their view of the anatomy of
prototypes:
1. Fundamental prototyping principle: Prototyping is an activity with the

purpose of creating a manifestation that, in its simplest form, filters
the qualities in which designers are interested, without distorting the
understanding of the whole.

2. Economic principle of prototyping: The best prototype is one that, in
the simplest and the most efficient way, makes the possibilities and
limitations of a design idea visible and measurable.

3. Anatomy of prototypes: Prototypes are filters that traverse a design
space and are manifestations of design ideas that concretize and
externalize conceptual ideas.

Lim et al identify several dimensions of filtering and of manifestation that
may be considered when developing a prototype, although they point out
that these dimensions are not complete but provide a useful starting point
for consideration of prototype development. These are shown in Tables
11.1 and 11.2. 



Table 11.1 Example variables of each filtering dimension

Filtering
dimension

Example variables

Appearance size; color; shape; margin; form; weight; texture;
proportion; hardness; transparency; gradation; haptic;
sound

Data data size; data type (e.g. number; string; media); data
use; privacy type; hierarchy; organization

Functionality system function; users’ functionality need
Interactivity input behavior; output behavior; feedback behavior;

information behavior
Spatial
structure

arrangement of interface or information elements;
relationship among interface or information elements –
which can be either two- or three-dimensional, intangible or
tangible, or mixed



Table 11.2 The definition and variables of each manifestation
dimension

Manifestation
dimension

Definition Example variables

Material Medium (either
visible or
invisible) used
to form a
prototype

Physical media, e.g. paper, wood, and
plastic; tools for manipulating physical
matters, e.g. knife, scissors, pen, and
sandpaper; computational prototyping
tools, e.g. Macromedia Flash and Visual
Basic; physical computing tools, e.g.
Phidgets and Basic Stamps; available
existing artifacts, e.g. a beeper to
simulate a heart attack

Resolution Level of detail
or
sophistication
of what is
manifested
(corresponding
to fidelity)

Accuracy of performance, e.g. feedback
time responding to an input by a user
(giving user feedback in a paper
prototype is slower than in a computer-
based one); appearance details;
interactivity details; realistic versus faked
data

Scope Range of what
is covered to
be manifested

Level of contextualization, e.g. website
color scheme testing with only color
scheme charts or color schemes placed
in a website layout structure; book
search navigation usability testing with
only the book search related interface or
the whole navigation interface

Two common compromises that often must be traded against each other are
breadth of functionality provided versus depth. These two kinds of
prototyping are called horizontal prototyping (providing a wide range of
functions but with little detail) and vertical prototyping (providing a lot of detail
for only a few functions).
Other compromises won't be obvious to a user of the system. For example,
the internal structure of the product may not have been carefully designed,
and the prototype may contain spaghetti code or be badly partitioned. One
of the dangers of producing functional prototypes, i.e. ones that users can
interact with automatically, is that the prototype can appear to be the final



product. Another is that developers may consider fewer alternatives because
the prototype works and users like it. However, the compromises made in
order to produce the prototype must not be ignored, particularly those that
are less obvious from the outside. For a good-quality product, good
engineering principles must be adhered to.

BOX 11.2

When to use high fidelity and when to use low fidelity
prototypes
Table 11.3 summarizes proclaimed advantages and disadvantages of
high- and low-fidelity prototyping. Component kits and pattern libraries
for interface components (see Section 11.7 and Chapter 12) make it
quite easy to develop polished functional prototypes quickly, but there is
a strong case for the value of low-fidelity prototypes, such as paper-
based sketches, sticky note designs, and storyboarding, to explore initial
ideas. Paper prototyping, for example, is used in game design (Gibson,
2014), website development, and product design (Case study 11.1).
Both high- and low-fidelity prototypes provide useful feedback during
evaluation and design iterations. For example, Dhillon et al (2011) found
that a low-fidelity video prototype elicited comparable user feedback as
a high-fidelity one, but was quicker and cheaper to produce. In the
context of usability testing, most studies have found that there is no
difference between the low- and high-fidelity approach in terms of user
feedback (Sauer and Sonderegger, 2009), although they present some



evidence that medium-fidelity prototypes are viewed as being less
attractive than high- or low-fidelity ones. When exploring issues of
content and structure, low-fidelity prototyping is preferable simply on the
basis of cost, with the caveat that designers must be careful not to
design technically infeasible capabilities on paper (Holmquist, 2005). The
overriding consideration is the purpose of the prototype, and what level
of fidelity is needed in order to get useful feedback. 

Table 11.3 Advantages and disadvantages of low- and high-
fidelity prototypes

Type Advantages Disadvantages
Low-fidelity
prototype

Lower development cost
Evaluates multiple design
concepts
Useful communication
device
Addresses screen layout
issues
Useful for identifying
market requirements
Proof of concept

Limited error checking
Poor detailed specification to
code to
Facilitator-driven
Limited utility after
requirements established
Limited usefulness for
usability tests
Navigational and flow
limitations

High-fidelity
prototype

Complete functionality
Fully interactive
User-driven
Clearly defines navigational
scheme
Use for exploration and
test
Look and feel of final
product
Serves as a living
specification
Marketing and sales tool

More resource-intensive to
develop
Time-consuming to create
Inefficient for proof-of-
concept designs
Not effective for
requirements gathering

Case Study 11.1



Paper prototyping as a core tool in the design
of cell phone user interfaces
Paper prototyping is being used by cell phone and tablet companies as a
core part of their design process (see Figure 11.6). There is much
competition in the industry, demanding ever more new concepts. Mobile
devices are feature-rich. They include mega-pixel cameras, music
players, media galleries, downloaded applications, and more. This
requires designing interactions that are complex, but are clear to learn
and use. Paper prototyping offers a rapid way to work through every
detail of the interaction design across multiple applications.

Figure 11.6 Prototype developed for cell phone user interface

Mobile device projects involve a range of disciplines – all with their own
viewpoint on what the product should be. A typical project may include
programmers, project managers, marketing experts, commercial
managers, handset manufacturers, user experience specialists, visual
designers, content managers, and network specialists. Paper prototyping
provides a vehicle for everyone involved to be part of the design process
– considering the design from multiple angles in a collaborative way.
The case study on the website describes the benefits of using paper
prototyping from the designer's viewpoint, while considering the bigger
picture of its impact across the entire project lifecycle. It starts by
explaining the problem space and how paper prototyping is used as an



integrated part of user interface design projects for European and US-
based mobile operator companies. The case study uses project
examples to illustrate the approach and explains step by step how the
method can be used to include a range of stakeholders in the design
process – regardless of their skill set or background. The case study
offers exercises so you can experiment with the approach yourself. 

Although prototypes will have undergone extensive user evaluation, they will
not necessarily have been subjected to rigorous quality testing for other
characteristics such as robustness and error-free operation. Building a
product to be used by thousands or millions of people running on various
platforms and under a wide range of circumstances requires a different
testing regime than producing a quick prototype to answer specific
questions.
The next Dilemma box discusses two different development philosophies. In
evolutionary prototyping, a prototype evolves into the final product.
Throwaway prototyping uses the prototypes as stepping stones towards the
final design. In this case, the prototypes are thrown away and the final
product is built from scratch. If an evolutionary prototyping approach is to be
taken, the prototypes should be subjected to rigorous testing along the way;
for throwaway prototyping such testing is not necessary.



DILEMMA

Prototyping versus engineering
Low-fidelity prototypes are not integrated into the final product. In
contrast, high-fidelity prototypes can be and so present developers with
a dilemma. They can choose to either build the prototype with the
intention of throwing it away after it has fulfilled its immediate purpose, or
build a prototype with the intention of evolving it into the final product.
The compromises made when producing a prototype must not be
ignored – whatever those compromises were. However, when a project
team is under pressure, it can become tempting to pull together a set of
existing prototypes as the final product. After all, many hours of
development will have been spent developing them, and evaluation with
the client has gone well, so isn't it a waste to throw it all away? Basing
the final product on prototypes in this way will simply store up testing and
maintenance problems for later on: in short, this is likely to compromise
the quality of the product.
Evolving the prototype into the final product through a defined process of
engineering can lead to a robust final product, but this must be clearly
planned from the beginning.
On the other hand, if the device is an innovation, then being first to
market with a ‘good enough’ product may be more important for securing
your market position than having a very high-quality product that reaches
the market two months after your competitors’. 

11.3 Conceptual Design
Conceptual design is concerned with transforming requirements into a
conceptual model. Designing the conceptual model is fundamental to
interaction design, yet the idea of a conceptual model can be difficult to
grasp. One of the reasons for this is that conceptual models take many
different forms and it is not possible to provide a definitive detailed
characterization of one. Instead, conceptual design is best understood by
exploring and experiencing different approaches to it, and the purpose of this
section is to provide you with some concrete suggestions about how to go
about doing this.



A conceptual model is an outline of what people can do with a product and
what concepts are needed to understand how to interact with it. The former
will emerge from the current functional requirements; possibly it will be a
subset of them, possibly all of them, and possibly an extended version of
them. The concepts needed to understand how to interact with the product
depend on a variety of issues related to who the user will be, what kind of
interaction will be used, what kind of interface will be used, terminology,
metaphors, application domain, and so on. The first step in getting a
concrete view of the conceptual model is to steep yourself in the data you
have gathered about your users and their goals and try to empathize with
them. From this, a picture of what you want the users’ experience to be
when using the new product will emerge and become more concrete. This
process is helped by considering the issues in this section, and by using
scenarios and prototypes to capture and experiment with ideas. Mood
boards (traditionally used in fashion and interior design) may be used to
capture the desired feel of a new product (see Figure 11.7). This is informed
by results from the requirements activity and considered in the context of
technological feasibility.

Figure 11.7 An example mood board
Source: Image courtesy of The Blog Studio www.theblogstudio.com.

There are different ways to achieve empathy with users. For example, Beyer
and Holtzblatt (1998), in their method Contextual Design, recommend holding
review meetings within the team to get different peoples’ perspectives on the
data and what they observed. This helps to deepen understanding and to

http://www.theblogstudio.com


expose the whole team to different aspects. Ideas will emerge as this
extended understanding of the requirements is established, and these can be
tested against other data and scenarios, discussed with other design team
members, and prototyped for testing with users. Other ways to understand
the users’ experience are described in Box 11.3.
Key guiding principles of conceptual design are:

Keep an open mind but never forget the users and their context.
Discuss ideas with other stakeholders as much as possible.
Use prototyping to get rapid feedback.
Iterate, iterate, and iterate.

11.3.1 Developing an Initial Conceptual Model
Some elements of a conceptual model will derive from the requirements for
the product. For example, the requirements activity will have provided
information about the concepts involved in a task and their relationships, e.g.
through task descriptions and analysis. Immersion in the data and attempting
to empathize with the users as described above will, together with the
requirements, provide information about the product's user experience goals,
and give you a good understanding of what the product should be like. In this
section we discuss approaches which help in pulling together an initial
conceptual model. In particular, we consider:

Which interface metaphors would be suitable to help users understand
the product?
Which interaction type(s) would best support the users’ activities?
Do different interface types suggest alternative design insights or
options?

BOX 11.3

How to really understand the users’ experience
Some design teams go to great lengths to ensure that they come to
empathize with the users’ experience. This box introduces two examples
of this approach.
Buchenau and Suri (2000) describe experience prototyping, which is
intended to give designers some insight into a user's experience that can
only come from first-hand knowledge. They describe a team designing a



chest-implanted automatic defibrillator. A defibrillator is used with victims
of cardiac arrest when their heart muscle goes into a chaotic arrhythmia
and fails to pump blood, a state called fibrillation. A defibrillator delivers
an electric shock to the heart, often through paddle electrodes applied
externally through the chest wall; an implanted defibrillator does this
through leads that connect directly to the heart muscle. In either case,
it's a big electric shock intended to restore the heart muscle to its regular
rhythm that can be powerful enough to knock people off their feet.
This kind of event is completely outside most people's experience, and
so it is difficult for designers to gain the insight they need to understand
the user's experience. You can't fit a prototype pacemaker to each
member of the design team and simulate fibrillation in them! However,
you can simulate some critical aspects of the experience, one of which is
the random occurrence of a defibrillating shock. To achieve this, each
team member was given a pager to take home over the weekend (see
Figure 11.8). The pager message simulated the occurrence of a
defibrillating shock. Messages were sent at random, and team members
were asked to record where they were, who they were with, what they
were doing, and what they thought and felt knowing that this represented
a shock. Experiences were shared the following week, and example
insights ranged from anxiety around everyday happenings such as
holding a child and operating power tools, to being in social situations
and at a loss how to communicate to onlookers what was happening.
This first-hand experience brought new insights to the design effort.



Figure 11.8 The patient kit for experience prototyping
Source: Buchenau, M. and Suri, J. F. (2000) Experience prototyping. In Proceedings of
DIS 2000, Design Interactive Systems: Processes, Practices, Methods, Techniques, pp.
17–19.

Another instance is the Third Age suit, an empathy suit designed so that
car designers can experience what it is like for people with some loss of
mobility or declining sensory perception to drive their cars. The suit
restricts movement in the neck, arms, legs, and ankles. Originally
developed by Ford Motor Company and Loughborough University (see
Figure 11.9) it has been used to raise awareness within groups of car
designers, architects, and other product designers. 



Figure 11.9 The Third Age empathy suit helps designers
experience the loss of mobility and sensory perception
Source: Ford Motor Co.

It is not the case that one way of approaching a conceptual design is right
for one situation and wrong for another; all of these approaches provide
different ways of thinking about the product and help in generating potential
conceptual models.

Interface metaphors.
Interface metaphors combine familiar knowledge with new knowledge in a
way that will help the user understand the product. Choosing suitable
metaphors and combining new and familiar concepts requires a careful
balance between utility and fun, and is based on a sound understanding of
the users and their context. For example, consider an educational system to
teach 6-year-olds mathematics. One possible metaphor is a classroom with
a teacher standing at the blackboard. But if you consider the users of the
system and what is likely to engage them, a metaphor that reminds the
children of something they enjoy would be more suitable, such as a ball
game, the circus, a playroom, and so on.
Erickson (1990) suggests a three-step process for choosing a good
interface metaphor. The first step is to understand what the system will do,
i.e. identifying the functional requirements. Developing partial conceptual
models and trying them out may be part of the process. The second step is
to understand which bits of the product are likely to cause users problems,



i.e. which tasks or subtasks cause problems, are complicated, or are critical.
A metaphor is only a partial mapping between the software and the real thing
upon which the metaphor is based. Understanding areas in which users are
likely to have difficulties means that the metaphor can be chosen to support
those aspects. The third step is to generate metaphors. Looking for
metaphors in the users’ description of the tasks is a good starting point.
Also, any metaphors used in the application domain with which the users
may be familiar may be suitable.
When suitable metaphors have been generated, they need to be evaluated.
Erickson (1990) suggests five questions to ask.
1. How much structure does the metaphor provide? A good metaphor will

provide structure, and preferably familiar structure.
2. How much of the metaphor is relevant to the problem? One of the

difficulties of using metaphors is that users may think they understand
more than they do and start applying inappropriate elements of the
metaphor to the product, leading to confusion or false expectations.

3. Is the interface metaphor easy to represent? A good metaphor will be
associated with particular visual and audio elements, as well as words.

4. Will your audience understand the metaphor?
5. How extensible is the metaphor? Does it have extra aspects that may be

useful later on?
For the shared travel organizer introduced in Chapter 10, one metaphor we
could use is a printed travel brochure, which is commonly found in travel
agents. This familiarity could be combined with facilities suitable for an
electronic brochure such as videos of locations, and searching. To evaluate
this metaphor, apply the five questions listed above.
1. Does it supply structure? Yes, it supplies structure based on the familiar

paper-based brochure. This is a book and therefore has pages, a cover,
some kind of binding to hold the pages together, an index, and table of
contents. Travel brochures are often structured around destinations but
are also sometimes structured around activities, particularly when the
company specializes in adventure trips. However, a traditional brochure
focuses on the details of the vacation and accommodation and has little
structure to support visa or vaccination information (both of which change
regularly and are therefore not suitable to include in a printed document).

2. How much of the metaphor is relevant? Having details of the
accommodation, facilities available, map of the area, and supporting



illustrations is relevant for the travel organizer, so the content of the
brochure is relevant. Also, structuring that information around types of
vacation and destinations is relevant, and preferably both sets of
grouping could be offered. But the physical nature of the brochure, such
as page turning, is less relevant. The travel organizer can be more
flexible than the brochure and should not try to emulate its book nature.
Finally, the brochure is printed maybe once a year and cannot be kept up-
to-date with the latest changes whereas the travel organizer should be
capable of offering the most recent information.

3. Is the metaphor easy to represent? Yes. The vacation information could
be a set of brochure-like pages. Note that this is not the same as saying
that the navigation through the pages will be limited to page-turning.

4. Will your audience understand the metaphor? Yes.
5. How extensible is the metaphor? The functionality of a paper-based

brochure is fairly limited. However, it is also a book, and we could borrow
facilities from ebooks (which are also familiar objects to most of our
audience), so yes, it can be extended.

Activity 11.2

Another possible interface metaphor for the travel organizer is the travel
consultant. A travel consultant takes a set of requirements and tailors the
vacation accordingly, offering maybe two or three alternatives, but
making most of the decisions on the travelers’ behalf. Ask the five
questions above of this metaphor.

Comment

Show/Hide

Interaction types.
Chapter 2 introduced four different types of interaction: instructing,
conversing, manipulating, and exploring. Which is best suited to the current
design depends on the application domain and the kind of product being
developed. For example, a computer game is most likely to suit a
manipulating style, while a drawing package has aspects of instructing and
conversing.
Most conceptual models will include a combination of interaction types, and it



is necessary to associate different parts of the interaction with different
types. For example, in the travel organizer, one of the user tasks is to find
out the visa regulations for a particular destination. This will require an
instructing approach to interaction as no dialog is necessary for the system
to show the regulations. The user simply has to enter a predefined set of
information, e.g. country issuing the passport and destination. On the other
hand, trying to identify a vacation for a group of people may be conducted
more like a conversation. For example, the user may begin by selecting
some characteristics of the destination and some time constraints and
preferences, then the organizer will respond with several options, and the
user will provide more information or preferences and so on. (You may like to
refer back to the scenario of this task in Chapter 10 and consider how well it
matches this type of interaction.) Alternatively, for users who don't have any
clear requirements yet, they might prefer to explore availability before asking
for specific options.

Interface types.
Considering different interfaces at this stage may seem premature, but it has
both a design and a practical purpose. When thinking about the conceptual
model for a product, it is important not to be unduly influenced by a
predetermined interface type. Different interface types prompt and support
different perspectives on the product under development and suggest
different possible behaviors. Therefore considering the effect of different
interfaces on the product at this stage is one way to prompt alternatives.
Before the product can be prototyped, some candidate alternative interfaces
will need to have been chosen. These decisions will depend on the product
constraints, arising from the requirements you have established. For
example, input and output devices will be influenced particularly by user and
environmental requirements. Therefore, considering interfaces here also
takes one step towards producing practical prototypes.
To illustrate this, we consider a subset of the interfaces introduced in
Chapter 6, and the different perspectives they bring to the travel organizer:

Shareable interface. The travel organizer has to be shareable as it is
intended to be used by a group of people, and it should be exciting and
fun. The design issues for shareable interfaces which were introduced in
Chapter 6 will need to be considered for this system. For example how
best (whether) to use the individuals’ own devices such as smartphones in
conjunction with a shared interface.
Tangible interface. Tangible interfaces are a form of sensor-based



interaction, where blocks or other physical objects are moved around.
Thinking about a travel organizer in this way conjures up an interesting
image of people collaborating, maybe with the physical objects
representing themselves traveling, but there are practical problems of
having this kind of interface, as the objects may be lost or damaged.
Augmented and mixed reality. The travel organizer is not the kind of
product that is usually designed for an augmented or mixed reality
interface. The question is what would the physical object be in this case,
that the virtual element could enhance? One possibility might be to
enhance the physical brochure to provide more dynamic and easily
changed information.

Activity 11.3

Consider the movie rental subscription service introduced in Chapter 10.
1. Identify tasks associated with this product that would best be

supported by each of the interaction types instructing, conversing,
manipulating, and exploring.

2. Pick out two interface types from Chapter 6 that might provide a
different perspective on the design.

Comment

Show/Hide

11.3.2 Expanding the Initial Conceptual Model
Considering the issues in the previous section helps the designer to produce
a set of initial conceptual model ideas. These ideas must be thought through
in more detail and expanded before being prototyped or tested with users.
For example, concrete suggestions of the concepts to be communicated
between the user and the product and how they are to be structured,
related, and presented are needed. This means deciding which functions the
product will perform (and which the user will perform), how those functions
are related, and what information is required to support them. These
decisions will be made initially only tentatively and may change after
prototyping and evaluation.

What functions will the product perform?



Understanding the tasks the product will support is a fundamental aspect of
developing the conceptual model, but it is also important to consider which
elements of the task will be the responsibility of the user and which will be
carried out by the product. For example, the travel organizer may suggest
specific vacation options for a given set of people, but is that as much as it
should do? Should it automatically reserve the booking, or wait until it is told
that this travel arrangement is suitable? Developing scenarios, essential use
cases, and use cases will help clarify the answers to these questions.
Deciding what the system will do and the user will do is sometimes called
task allocation. This trade-off has cognitive implications (see Chapter 3), and
is linked to social aspects of collaboration (see Chapter 4). If the cognitive
load is too high for the user, then the device may be too stressful to use. On
the other hand, if the product has too much control and is too inflexible, then
it may not be used at all.
Another decision is which functions to hard-wire into the product and which to
leave under software control, and thereby indirectly in the control of the
human user.

How are the functions related to each other?
Functions may be related temporally, e.g. one must be performed before
another, or two can be performed in parallel. They may also be related
through any number of possible categorizations, e.g. all functions relating to
privacy on a smartphone, or all options for viewing photographs in a social
networking site. The relationships between tasks may constrain use or may
indicate suitable task structures within the product. For example, if one task
depends on another, the order in which tasks can be completed may need to
be restricted.
If task analysis has been performed, the breakdown will support these kinds
of decision. For example, in the travel organizer example, the task analysis
performed in Section 10.7 shows the subtasks involved and the order in
which the subtasks can be performed. Thus, the system could allow potential
travel companies to be found before or after investigating the destination's
facilities. It is, however, important to identify the potential travel companies
before looking for availability.

What information is needed?
What data is required to perform a task? How is this data to be transformed
by the system? Data is one of the categories of requirements identified and
captured through the requirements activity. During conceptual design, these
requirements are considered to ensure that the model provides the



information necessary to perform the task. Detailed issues of structure and
display, such as whether to use an analog display or a digital display, will
more likely be dealt with during the concrete design activity, but implications
arising from the type of data to be displayed may impact conceptual design
issues.
For example, identifying potential vacations for a set of people using the
travel organizer requires the following information: what kind of vacation is
required; available budget; preferred destinations (if any); preferred dates
and duration (if any); how many people it is for; and any special
requirements (such as disability) that this group has. In order to perform the
function, the system needs this information and must have access to detailed
vacation and destination descriptions, booking availability, facilities,
restrictions, and so on.
Initial conceptual models may be captured in wireframes – a set of
documents that show structure, content, and controls. Wireframes may be
constructed at varying levels of abstraction, and may show a part of the
product or a complete overview. Case Study 11.2 and Chapter 12 include
more information and some examples.

11.4 Concrete Design
Conceptual design and concrete design are closely related. The difference
between them is rather a matter of changing emphasis: during design,
conceptual issues will sometimes be highlighted and at other times, concrete
detail will be stressed. Producing a prototype inevitably means making some
concrete decisions, albeit tentatively, and since interaction design is iterative,
some detailed issues will come up during conceptual design, and vice versa.
Designers need to balance the range of environmental, user, data, usability,
and user experience requirements with functional requirements. These are
sometimes in conflict. For example, the functionality of a wearable interactive
product will be restricted by the activities the user wishes to perform while
wearing it; a computer game may need to be learnable but also challenging.
There are many aspects to the concrete design of interactive products:
visual appearance such as color and graphics, icon design, button design,
interface layout, choice of interaction devices, and so on. Chapter 6
introduces several interface types and their associated design issues; these
issues represent the kinds of decision that need to be made during concrete
design. Case study 11.2 illustrates the impact that different-sized devices
may have on the same application, and the need to explicitly design for



different form factors. Chapter 6 also introduces some guidelines, principles,
and rules for different interface types to help designers ensure that their
products meet usability and user experience goals.

Case Study 11.2

Designing mobile applications for multiple form
factors
Trutap is a social networking service designed for more than 350
different models of mobile device, which was built for a UK startup
between 2007 and 2009. It aggregates online blogging, instant
messaging, and social services like Facebook, allowing its users to
interact with them (see Figures 11.10 and 11.11). The design of the
Trutap application, which took place over two major releases, posed
significant challenges in terms of how to integrate disparate sources of
data onto small-screen devices, and produce a design which would scale
between form factors, i.e. different physical handset designs.

Figure 11.10 Trutap: version 2.0 design concepts
Source: © Trutap, Reproduced with permission.



Figure 11.11 Trutap: version 2.0 screenshots, inbox
Source: © Trutap, Reproduced with permission.

The product was designed with a clear goal: teenagers and young adults
were spending much of their social lives online. Trutap would help them
keep connected, wherever they were.
Two versions of the product were launched: Trutap 1.0 offered its own
mechanisms for managing people's contacts and communicating with
them, and tied into a range of existing instant messaging networks
(Yahoo!, MSN, AOL, and the like). Launched in 2008, this version saw
far greater take-up in India and Indonesia than with its original target
audience of UK students.
This take-up, combined with the successful launch of the iPhone in July
2008 and the increasing prominence of Facebook as the dominant site
for personal social networking, led to a change in emphasis for the 2.0
release of Trutap. Launched a year after 1.0, and technically an evolution
rather than a reworking, release 2.0 emphasized the aggregation of
existing online services, tying into Facebook, weblogging software, and
photo management, and extending the number of instant messaging
services covered. Publicly, the product was presented as a means for
aspirational middle classes in the developing world to experience many
of the same benefits that the iPhone promised, but on their conventional
mobile devices.
This case study, by Tom Hume, Johanna Hunt, Bryan Rieger, and Devi



Lozdan from Future Platforms Ltd, explores the impact that different
form factors had on the design of Trutap. 

Concrete design also deals with issues related to user characteristics and
context, and two aspects that have drawn particular attention for concrete
design are accessibility and national culture. Accessibility was discussed in
Box 1.2. Researchers, designers, and evaluators have investigated a range
of techniques, toolkits, and interaction devices to support individuals with
different accessibility needs. More recently, there has been a reaction to this
approach that challenges the ‘rhetoric of compassion’ in favor of a ‘rhetoric of
engagement', and suggests that users be empowered rather than designed
for (Rogers and Marsden, 2013).
Aspects of cross-cultural design include use of appropriate language(s),
colors, icons and images, navigation, and information architecture (Rau et al,
2013). Example design guidelines include ensuring that the product supports
different formats for dates, times, numbers, measurements, and currencies,
and that generic icons are designed where possible (Esselink, 2000).
However, Marsden et al (2008) warn of the problems in seeing a user's need
and attempting to meet that need without first asking the community if they,
too, recognize that need (see also Case Study 11.3 and Gary Marsden's
interview at the end of this chapter).
Guidelines, although seemingly attractive, can be misguided. One of the
most well-known sets of guidelines for cultural web design was proposed by
Marcus and Gould (2000), building on the cultural dimensions proposed by
Hofstede (1994). However, Hofstede's work, and its application in interaction
design, has been challenged (see Box 11.4), and designing for a cross-
cultural audience is now recognized as more than a translation exercise. As
Carlson (1992, p. 175) has put it, successful products “are not just bundles
of technical solutions; they are also bundles of social solutions. Inventors
succeed in a particular culture because they understand the values,
institutional arrangements, and economic notions of that culture.”



BOX 11.4

Using Hofstede's dimensions in interaction design
One of the most influential pieces of work on characterizing national
culture differences was carried out by a management theorist called
Geert Hofstede around 1970. He was given access to responses from a
survey of IBM employees in over 50 countries worldwide and from this
he identified four dimensions of national culture: power distance (PD),
individualism (IND), masculinity–femininity (MAS), and uncertainty
avoidance (UA). As a result of work done in Hong Kong at a later date by
a Canadian, Michael Bond, a fifth dimension was added that deals with
time orientation.
Although influential, Hofstede's work does have limitations. For example,
he admits that the people involved in designing the original questionnaire
were all from Western cultures. In addition, his studies have been
discussed and challenged over the intervening years: e.g. Oyserman et
al (2002) challenged his finding that European Americans are more
individualistic than people from other ethnic groups. The application of his
ideas in interaction design has also been challenged – e.g. work by
Oshlyansky (2007) found that Hofstede's model does not help explain
cultural differences in affordance; nor does it seem to apply to
technology acceptance. So, although popular, Hofstede's dimensions
may not be the best approach to accommodating national culture
differences in interaction design. 

11.5 Using Scenarios
Scenarios are informal stories about user tasks and activities. Scenarios can
be used to model existing work situations, but they are more commonly used
for expressing proposed or imagined situations to help in conceptual design.
Often, stakeholders are actively involved in producing and checking through
scenarios for a product. Bødker suggests four roles (Bødker, 2000, p. 63):
1. As a basis for the overall design.
2. For technical implementation.
3. As a means of cooperation within design teams.
4. As a means of cooperation across professional boundaries, i.e. as a

basis of communication in a multidisciplinary team.



In any one project, scenarios may be used for any or all of these. More
specifically, scenarios have been used as scripts for user evaluation of
prototypes, as the basis of storyboard creation (see Section 11.6.1), and to
build a shared understanding among team members. Scenarios are good at
selling ideas to users, managers, and potential customers.
Bødker proposes the notion of plus and minus scenarios. These attempt to
capture the most positive and the most negative consequences of a
particular proposed design solution (see Figure 11.12), thereby helping
designers to gain a more comprehensive view of the proposal. This idea has
been extended by Mancini et al (2010) who use positive and negative video
scenarios to explore futuristic technology.

Scenario 3: Hyper-wonderland
This scenario addresses the positive aspects of how a hypermedia solution
will work.
The setting is the Lindholm construction site sometime in the future.
Kurt has access to a portable PC. The portables are hooked up to the
computer at the site office via a wireless modem connection, through which
the supervisors run the hypermedia application.

Action: During inspection of one of the caissons1 Kurt takes his portable PC,
switches it on and places the cursor on the required information. He clicks
the mouse button and gets the master file index together with an overview of
links. He chooses the links of relevance for the caisson he is inspecting.
Kurt is pleased that he no longer needs to plan his inspections in advance.
This is a great help because due to the ‘event-driven’ nature of inspection,
constructors never know where and when an inspection is taking place.
Moreover, it has become much easier to keep track of personal notes,
reports etc. because they can be entered directly on the spot.
The access via the construction site interface does not force him to deal with
complicated keywords either. Instead, he can access the relevant
information right away, literally from where he is standing.
A positive side-effect concerns his reachability. As long as he has logged in
on the computer, he is within reach of the secretaries and can be contacted
when guests arrive or when he is needed somewhere else on the site.
Moreover, he can see at a glance where his colleagues are working and get
in touch with them when he needs their help or advice.
All in all, Kurt feels that the new computer application has put him more in
control of things.



1 Used in building to hold water back during construction.
Scenario 4: Panopticon
This scenario addresses the negative aspects of how a hypermedia solution
will work.
The setting is the Lindholm construction site sometime in the future.
Kurt has access to a portable PC. The portables are hooked up to the
computer at the site office via a wireless modem connection, through which
the supervisors run the hypermedia application.
Action: During inspecting one of the caissons Kurt starts talking to one of the
builders about some reinforcement problem. They argue about the recent lab
tests, and he takes out his portable PC in order to provide some data which
justify his arguments. It takes quite a while before he finds a spot where he
can place the PC: either there is too much light, or there is no level surface
at a suitable height. Finally, he puts the laptop on a big box and switches it
on. He positions the cursor on the caisson he is currently inspecting and
clicks the mouse to get into the master file. The table of contents pops up
and from the overview of links he chooses those of relevance – but no lab
test appears on the screen. Obviously, the file has not been updated as
planned.
Kurt is rather upset. This loss of prestige in front of a contractor engineer
would not have happened if he had planned his inspection as he had in the
old days.
Sometimes. he feels like a hunted fox especially in situations where he is
drifting around thinking about what kind of action to take in a particular case.
If he has forgotten to log out, he suddenly has a secretary on the phone: “I
see you are right at caisson 39, so could you not just drop by and take a
message?”
All in all Kurt feels that the new computer application has put him under
control.

Figure 11.12 Example plus and minus scenarios
Source: S. Bødker (2000) Scenarios in user-centered design – setting the stage for
reflection and action. Interacting with Computers, 13(1), Fig. 2, p. 70.

11.6 Generating Prototypes
In this section we illustrate how prototypes may be used in design, and
demonstrate one way in which prototypes may be generated from the output



of the requirements activity: producing a storyboard from a scenario and a
card-based prototype from a use case. Both of these are low-fidelity
prototypes and they may be used as the basis to develop more detailed
interface designs and higher-fidelity prototypes as development progresses.

11.6.1 Generating Storyboards from Scenarios
A storyboard represents a sequence of actions or events that the user and
the product go through to achieve a task. A scenario is one story about how
a product may be used to achieve the task. It is therefore possible to
generate a storyboard from a scenario by breaking the scenario into a series
of steps which focus on interaction, and creating one scene in the storyboard
for each step. The purpose for doing this is two-fold: first, to produce a
storyboard that can be used to get feedback from users and colleagues;
second, to prompt the design team to consider the scenario and the
product's use in more detail. For example, consider the scenario for the
travel organizer developed in Chapter 10. This can be broken down into five
main steps:
1. The Thomson family gather around the organizer and enter a set of initial

requirements.
2. The system's initial suggestion is that they consider a flotilla trip but Sky

and Eamonn aren't happy.
3. The travel organizer shows them some descriptions of the flotillas written

by young people.
4. Will confirms this recommendation and asks for details.
5. The travel organizer emails the details.



Activity 11.4

Consider an augmented reality in-car navigation system that takes
information from a GPS and displays routes and traffic information
directly onto the car windscreen. Suggest one plus and one minus
scenario. For the plus scenario, think of the possible benefits of the
system. For the minus scenario, imagine what could go wrong.

Figure 11.13 An example car-navigation system based on
augmented reality
Source: The Aeon Project, courtesy of Michaël Harboun

Comment
Show/Hide

The first thing to notice about this set of steps is that it does not have the
detail of a use case but identifies the key events or activities associated with
the scenario. The second thing to notice is that some of these events are
focused solely on the travel organizer's screen and some are concerned with
the environment. For example, the first one talks about the family gathering
around the organizer, while the third and fifth are focused on the travel
organizer. We therefore could produce a storyboard that focuses on the
screens or one that is focused on the environment. Either way, sketching out
the storyboard will prompt us to think about design issues.
For example, the scenario says nothing about the kind of input and output
devices that the system might use, but drawing the organizer forces you to
think about these things. There is some information about the environment
within which the system will operate, but again drawing the scene makes you



stop and think about where the organizer will be. You don't have to make any
decisions about, e.g. using a trackball, or a touch screen, or whatever, but
you are forced to think about it. When focusing on the screens, the designer
is prompted to consider issues including what information needs to be
available and what information needs to be output. This all helps to explore
design decisions and alternatives, but is also made more explicit because of
the drawing act.
We chose to draw a storyboard that focuses on the environment of the travel
organizer, and it is shown in Figure 11.14. While drawing this, various
questions relating to the environment came to mind such as how can the
interaction be designed for all the family? Will they sit or stand? How
confidential should the interaction be? What kind of documentation or help
needs to be available? What physical components does the travel organizer
need? And so on. In this exercise, the questions it prompts are just as
important as the end product.

Figure 11.14 The storyboard for the travel organizer focusing on
environmental issues

Note that although we have used the scenario as the main driver for
producing the storyboard, there is other information from the requirements
activity that also informs development.



Activity 11.5

Activity 10.3 asked you to develop a futuristic scenario for the one-stop
car shop. Using this scenario, develop a storyboard that focuses on the
environment of the user. As you are drawing this storyboard, write down
the design issues you are prompted to consider.

Comment

Show/Hide

11.6.2 Generating Card-Based Prototypes from Use Cases
The value of a card-based prototype lies in the fact that the screens or
interaction elements can be manipulated and moved around in order to
simulate interaction with a user or to explore the user's end-to-end
experience. Where a storyboard focusing on the screens has been
developed, this can be translated into a card-based prototype and used in
this way. Another way to produce a card-based prototype is to generate one
from a use case output from the requirements activity.
For example, consider the use case generated for the travel organizer in
Section 10.6.2. This focused on the visa requirements part of the system.
For each step in the use case, the travel organizer will need to have an
interaction component to deal with it, e.g. a button or menu option, or a
display. By stepping through the use case, it is possible to build up a card-
based prototype to cover the required behavior. For example, the cards in
Figure 11.16 were developed by considering each of the steps in the use
case. Card one covers step 1; card two covers steps 2, 3, 4, 5, 6, and 7;
and card three covers steps 8, 9, 10, and 11 (notice the print button that is
drawn into card three to allow for steps 10 and 11). As with the storyboards,
drawing concrete elements of the interface like this forces the designer to
think about detailed issues so that the user can interact with the prototype. In
card two you will see that I chose to use a drop-down menu for the country
and nationality. This is to avoid mistakes. However, the flaw in this is that I
may not catch all of the countries in my list, and so an alternative design
could also be incorporated where the user can choose an ‘enter below’
option and then type in the country or nationality (see Figure 11.17).



Figure 11.16 Cards one to three of a card-based prototype for the
travel organizer

Figure 11.17 Card four of a card-based prototype for the travel
organizer

These cards can then be shown to potential users of the system or fellow
designers to get informal feedback. In this case, I showed these cards to a
colleague, and through discussion of the application and the cards,
concluded that although the cards represent one interpretation of the use
case, they focus too much on an interaction model that assumes a
WIMP/GUI interface. Our discussion was informed by several things
including the storyboard and the scenario. One alternative would be to have



a map of the world, and users can indicate their destination and nationality
by choosing one of the countries on the map; another might be based around
national flags. These alternatives could be prototyped using cards and
further feedback obtained.

Activity 11.6

Produce a card-based prototype for the movie rental subscription service
and the task of renting a movie as described by the use case in Activity
10.4. You may also like to ask one of your peers to act as a user and
step through the task using the prototype.

Comment

Show/Hide

A set of card-based prototypes that cover a scenario from beginning to end
may be the basis of a more detailed prototype, such as an interface or
screen sketch, or it may be used in conjunction with personas to explore the
user's end-to-end experience. This latter purpose is achieved by creating a
visual representation of the user's experience. These representations are
variably called a design map (Adlin and Pruitt, 2010) or a customer journey
map (Ratcliffe and McNeill, 2012), or an experience map. They illustrate a
user's path or journey through the product or service, and are usually created
for a particular persona, hence giving the journey sufficient context and detail
to bring the discussions to life. They support designers in considering the
user's overall experience when achieving a particular goal and are used to
explore and question the designed experience and to identify issues that
have not been considered so far. They may be used to analyze existing
products and to collate design issues, or as part of the design process.
There are many different types of representation, of varying complexities.
Two main ones are: the wheel and the timeline. The wheel representation is
used when an interaction phase is more important than an interaction point,
e.g. for a flight (see Figure 11.19(a) for an example). The timeline is used
where a service is being provided that has a recognizable beginning and end
point, such as purchasing an item through a website (an example of a
timeline representation is in Figure 10.4(b)). Figure 11.19(b) illustrates the
structure of a timeline and how different kinds of issues may be captured,
e.g. questions, comments, and ideas.



Figure 11.19 (a) An experience map using a wheel representation. (b)
An example timeline design map illustrating how to capture different
issues.
Source: (a) http://www.ux-lady.com/experience-maps-user-journey-and-more-exp-map-layout/
(b) Adlin, T. and Pruitt, J. (2010) The Essential Persona Lifecycle: Your guide to building and
using personas. Morgan Kaufmann p. 134.

To generate one of these representations, take one persona and two or
three scenarios. Draw a timeline for the scenario and identify the interaction
points for the user. Then use this as a discussion tool with colleagues to

http://www.ux-lady.com/experience-maps-user-journey-and-more-exp-map-layout/


identify any issues or questions that may arise. Some people consider the
user's mood and identify pain points, sometimes the focus will be on
technical issues, and sometimes this can be used to identify missing
functionality or areas of under-designed interaction.

Video illustrating the benefits of experience mapping using a timeline at
http://youtu.be/eLT_Q8sRpyI

BOX 11.5

Involving users in design: participatory design
The idea of participatory design emerged in Scandinavia in the late
1960s and early 1970s. There were two influences on this early work:
the desire to be able to communicate information about complex
systems, and the labor union movement pushing for workers to have
democratic control over changes in their work. In the 1970s, new laws
gave workers the right to have a say in how their working environment
was changed, and such laws are still in force today. A fuller history of the
movement is given in Ehn (1989) and Nygaard (1990).
Several projects at this time attempted to involve users in design and
focus on work rather than on simply producing a product. One of the
most discussed is the UTOPIA project, a cooperative effort between the
Nordic Graphics Workers Union and research institutions in Denmark and
Sweden to design computer-based tools for text and image processing.
Involving users in design decisions is not simple, however. Cultural
differences can become acute when users and designers are asked to
work together to produce a specification for a system. Bødker et al
(1991) recount the following scene from the UTOPIA project: “Late one
afternoon, when the designers were almost through with a long
presentation of a proposal for the user interface of an integrated text and
image processing system, one of the typographers commented on the
lack of information about typographical code-structure. He didn't think
that it was a big error (he was a polite person), but he just wanted to
point out that the computer scientists who had prepared the proposal
had forgotten to specify how the codes were to be presented on the
screen. Would it read ‘<bf/’ or perhaps just ‘\b’ when the text that
followed was to be printed in boldface?”
In fact, the system being described by the designers was a WYSIWYG

http://youtu.be/eLT_Q8sRpyI


(what you see is what you get) system, and so text that needed to be in
bold typeface would appear as bold (although most typographic systems
at that time did require such codes). The typographer was unable to link
his knowledge and experience with what he was being told. In response
to this kind of problem, the project started using mockups. Simulating the
working situation helped workers to draw on their experience and tacit
knowledge, and designers to get a better understanding of the actual
work typographers needed to do.
Case Study 11.3 describes an extension to the participatory design idea,
called community-based design. 

Case Study 11.3

Deaf telephony
This case study by Edwin Blake, William Tucker, Meryl Glaser, and
Adinda Freudenthal discusses their experiences of community-based
design in South Africa. The process of community-based co-design is
one that explores various solution configurations in a multidimensional
design space whose axes are the different dimensions of requirements
and the various dimensions of designer skills and technological
capabilities. The bits of this space that one can ‘see’ are determined by
one's knowledge of the user needs and one's own skills. Co-design is a
way of exploring that space in a way that alleviates the myopia of one's
own viewpoint and bias. As this space is traversed, a trajectory is traced
according to one's skills and learning, and according to the users’
expressed requirements and their learning.
The project team set out to assist South African deaf people to
communicate with each other, with hearing people, and with public
services. The team has been working for many years with a deaf
community that has been disadvantaged due to both poverty and hearing
impairment. The story of this wide-ranging design has been one of
continual fertile (and on occasion frustrating) co-design with this
community. The team's long-term involvement has meant they have
transformed aspects of the community and that they have themselves
been changed in what they view as important and in how they approach
design.



Figure 11.20 One participant's view of communication
Source: Copyright Edwin Blake et al.

Figure 11.21 Participants discussing design in sign language

Deaf users in this community started out knowing essentially nothing
about computers. Their first language is South African Sign Language
(SASL) and this use of SASL is a proud sign of their identity as a people.
Many are also illiterate or semi-literate. There are a large number of
deaf people using SASL; in fact there are more than some of the smaller
official languages. Since the advent of democracy in 1994, there has
been an increasing empowerment of deaf people and it is accepted as a
distinct language in its own right.



In this case study, a brief historical overview of the project and the
various prototypes that formed nodes in a design trajectory are
presented. The methodology of Action Research and its cyclical
approach to homing in on an effective implementation is reviewed. An
important aspect of the method is how it facilitates learning by both the
researchers and the user community so that together they can form an
effective design team. Lastly, such a long-term intimate involvement with
a community raises important ethical issues, which are fundamentally
concerns of reciprocity. 

11.7 Construction
As prototyping and building alternatives progresses, development will focus
more on putting together components and developing the final product. This
may take the form of a physical product, such as a set of alarms, sensors
and lights, or a piece of software, or both. Whatever the final form, it is very
unlikely that you will develop anything from scratch as there are many useful
(in some cases essential) resources to support development. Here we
introduce two kinds of resource: physical computing kits and software
development kits (SDKs).

11.7.1 Physical Computing
Physical computing is concerned with how to build and code prototypes and
devices using electronics. Specifically, it is the activity of “creating physical
artifacts and giving them behaviors through a combination of building with
physical materials, computer programming and circuit building”(Gubbels and
Froehlich, 2014). Typically, it involves designing things, using a printed circuit
board (PCB), sensors (e.g. accelerometers, infrared, temperature) to detect
states, and actuators (e.g. motors, valves) that cause some effect. An
example is a ‘friend or foe’ cat detector that senses, via an accelerometer,
any cat (or anything else for that matter) that tries to push through a family's
catflap. The movement triggers an actuator to take a photo of what came
through the catflap using a webcam positioned on the back door. The photo
is uploaded to a website that alerts the owner if there are cats or other
objects that do not match their own cat's image.
A number of physical computing toolkits have been developed for educational
and prototyping purposes. One of the earliest is Arduino (see Banzi, 2009).
The aim was to enable artists and designers to learn how to make and code
physical prototypes using electronics in a couple of days, having attended a



workshop. The toolkit is composed of two parts: the Arduino board (see
Figure 11.22), which is the piece of hardware that is used to build objects,
and the Arduino IDE (integrated development environment), which is a piece
of software that makes it easy to program and upload a sketch (Arduino's
name for a unit of code) to the board. A sketch, for example, might turn on
an LED when a sensor detects a change in the light level. The Arduino board
is a small circuit that contains a tiny chip (the microcontroller). It has a
number of protruding ‘legs’ that provide input and output pins – which the
sensors and actuators are connected to. Sketches are written in the IDE
using a simple processing language, then uploaded to the board and
translated into the ‘C’ programming language.

Figure 11.22 The Arduino board
Source: Courtesy of Nicolai Marquardt

There are other toolkits that have been developed, based on the basic
Arduino kit. The most well known is the LilyPad, which was co-developed by
Leah Beuchley (see Figure 11.23 and her interview at the end of Chapter 6).
It is a set of sewable electronic components for building fashionable clothing
and other textiles. The Engduino® is a teaching tool based on the Arduino
LilyPad; it has 16 multicolour LEDs and a button, which can be used to
provide visual feedback, and simple user input. It also has a thermistor (that
senses temperature), a 3D accelerometer (that measures accelerations),
and an infrared transmitter/receiver that can be used to transmit messages
from one Engduino® to another.



Figure 11.23 The Lilypad Arduino kit
Source: Photo courtesy of Leah Buechley
http://web.media.mit.edu/~leah/LilyPad/build/turn_signal_jacket.html.

Video introducing MakeMe (Marquardt et al, 2015), a novel toolkit that is
assembled from a flat electronic sheet, where six sides are snapped out
then slotted together to become an interactive cube that lights up in
different colors, depending on how vigorously it is shaken. Intended to
encourage children to learn, share, and fire their imagination to come up
with new games and other uses, see it in action at
http://www.codeme.io/

Other kinds of easy-to-use and quick-to-get-started physical toolkits –
intended to provide new opportunities for people to be inventive and creative
with – are Senseboard (Richards and Woodthorpe, 2009), LittleBits, and
MaKey MaKey (Silver and Rosenbaum, 2012). The MaKey MaKey toolkit
comprises a printed circuit board with an Arduino microcontroller, alligator
clips, and a USB cable (see Figure 11.24). It communicates with a computer
to send key presses, mouse clicks, and mouse movements. There are six
inputs (the four arrow keys, the space bar, and a mouse click) positioned on
the front of the board that alligator clips are clipped onto in order to connect
with a computer via the USB cable. The other ends of the clips can be
attached to any non-insulating object, such as a vegetable or piece of fruit.
Thus, instead of using the computer keyboard buttons to interact with the

http://web.media.mit.edu/~leah/LilyPad/build/turn_signal_jacket.html
http://www.codeme.io/


computer, external objects such as bananas are used. The computer thinks
MaKey MaKey is just like a keyboard or mouse. An example is to play a
digital piano app using bananas as keys rather than keys on the computer
keyboard. When they are touched, they make a connection to the board and
MaKey MaKey sends the computer a keyboard message.

Figure 11.24 The MaKey MaKey toolkit

So far, physical toolkits have been aimed at children or designers to enable
them to start programming through rapid creation of small electronic gadgets
and digital tools (e.g. Hodges et al, 2013). However, Rogers et al (2014)
demonstrated how retired people were equally able to be creative using the
kit, turning “everyday objects into touchpads.” They ran a series of
workshops where small groups of retired friends, aged between early 60s
and late 80s, assembled and played with the MaKey MaKey toolkit (see
Figure 11.25). After playing music using fruit and vegetables as input, they
saw many new possibilities for innovative design. Making and playing
together, however childlike it might seem at first, can be a catalyst for
imagining, free thinking, and exploring. People are sometimes cautious to
volunteer their ideas, fearing that they are easily squashed, but in a positive
environment they can flourish. The right kind of shared experience can create
a positive and relaxed atmosphere, in which people from all walks of life can
freely bounce ideas around.



Figure 11.25 A group of retired friends playing with a MaKey MaKey
toolkit

BOX 11.6

The rise of the Maker Movement
The Maker Movement emerged in the mid 2000s. Following in the
footsteps of the computer revolution and the Internet, it is viewed as the
next big revolution that will transform manufacturing and production
(Hatch, 2014). Whereas the explosion of the web was all about what it
could do for us virtually, with a proliferation of apps, social media, and
services, the Maker Movement is transforming how we make, buy,
consume, and recycle things, from houses to clothes and food to
bicycles. At its core is DIY – crafting physical things using a diversity of
machines, tools, and methods collaboratively in workshops and
makespaces. In a nutshell, it is about inventing the future through
connecting technologies, the Internet, and physical things.
While there have always been hobbyists tinkering away making radios,
clocks, and other devices, the world of DIY making has been opened up
to many more people. Affordable, powerful, and easy-to-use tools,
coupled with a renewed focus on locally sourced products and
community-based activities, and a desire for sustainable, authentic, and
ethically produced products, has led to a ground swell in interest in how
to make. Fablabs (fabrication laboratories) first started appearing in
cities throughout the world, offering a large physical space containing
electronics and manufacturing equipment, including 3D printers, CNC
milling machines, and laser cutters. Individuals bring their digital files to
print and make things – which would have been impossible for them to do



previously – such as large 3D models, furniture, and installations. Then
smaller makerspaces started appearing in their thousands across the
world, from Shanghai to rural India, again sharing production facilities for
all to use and make. While some are small, for example sharing the use
of a 3D printer, others are much larger and well resourced, offering an
array of manufacturing machines, tools, and workspaces to make in.
Another development has been to build and program e-textiles using
sewing machines and electronic thread. E-textiles comprise fabrics that
are embedded with electronics, such as sensors, LEDs, and motors that
are stitched together using conductive thread and conductive fabrics
(Buechley and Qiu, 2014). An early example is the turn-signal biking
jacket (developed by Leah Buechley and illustrated in Figure 1.3). Other
e-textiles include interactive soft toys, wallpaper that sings when
touched, and fashion clothing that reacts to the environment or events.
A central part of the Maker Movement involves tinkering (as discussed in
Section 11.2.4) and the sharing of knowledge, skills, know-how, and
what you have made. The Instructables.com website is for anyone to
explore, document, and share their DIY creations. Go to the
Instructables site and take a look at a few of the projects that have been
uploaded by makers. How many of them are a combination of
electronics, physical materials, and pure invention? Are they fun, useful,
or gadgety? How are they presented? Do they inspire you to make?
Another site, Etsy.com, is a popular online marketplace for people who
make things to sell their crafts and other handmade items. It is designed
to be easy for makers to use and set up their store to sell to family,
friends, and strangers across the world. Unlike the corporate online
sites, (e.g. Amazon, eBay), it is a place for craft makers to reach others
and to show off their wares in ways they feel best fit what they have
made.
In essence, the Maker Movement is about taking the DIY movement
online to make it public and, in doing so, massively increase who can
take part and how it is shared (Anderson, 2013). 

http://Instructables.com
http://Etsy.com


Activity 11.7

Watch the video of Lady Gaga in the Voltanis, the first flying dress,
developed by the e-textile company XO. What do you think of this fusion
of fashion and state-of-the-art electronics and technology?

Video of Lady Gaga in the Voltanis at http://vimeo.com/91916514

Comment

Show/Hide

11.7.2 SDKs: Software Development Kits
A software development kit (SDK) is a package of programming tools and
components that supports the development of applications for a specific
platform, e.g. for iOS on iPad, iPhone, and iPod touch, for the Kinect device,
and for the Windows phone. Typically an SDK includes an IDE (integrated
development environment), documentation, drivers, and sample programming
code to illustrate how to use the SDK components. Some also include icons
and buttons that can easily be incorporated into the design. While it is
possible to develop applications without using an SDK, it is so much easier
using such a powerful resource, and so much more can be achieved.
For example, the availability of Microsoft's Kinect SDK makes the device's
powerful gesture recognition and body motion tracking capabilities
accessible. This has led to the exploration of, for example, motion tracking in
immersive games (Manuel et al, 2012), user identification using body lengths
(Hayashi et al, 2014), and robot control (Wang et al, 2013).
An SDK will include a set of application programming interfaces (APIs) that
allows control of the components without knowing the intricacies of how they
work. In some cases, access to the API alone is sufficient to allow significant
work to be udertaken, e.g. Hayashi et al (2014) only needed access to the
APIs. The difference between APIs and SDKs is explored in Box 11.7.

http://vimeo.com/91916514


BOX 11.7

APIs and SDKs
SDKs (software development kits) consist of a set of programming tools
and components while an API (application programming interface) is the
set of inputs and outputs, i.e. the technical interface to those
components. To explain this further, an API allows different-shaped
building blocks of a child's puzzle to be joined together, while an SDK
provides a workshop where all of the development tools are available to
create whatever size and shape blocks you fancy, rather than using pre-
shaped building blocks. An API therefore allows the use of pre-existing
building blocks, while an SDK removes this restriction and allows new
blocks to be created, or even to build something without blocks at all. An
SDK for any platform will include all the relevant APIs, but it adds
programming tools, documentation, and other development support as
well. 



Assignment

This assignment continues work on the online booking facility introduced
at the end of Chapter 10. The work will be continued in the assignments
for Chapters 12, 14, and 15.
a. Based on the information gleaned from the assignment in Chapter 10,

suggest three different conceptual models for this system. You should
consider each of the aspects of a conceptual model discussed in this
chapter: interface metaphor, interaction type, interface type, activities
it will support, functions, relationships between functions, and
information requirements. Of these conceptual models, decide which
one seems most appropriate and articulate the reasons why.

b. Produce the following prototypes for your chosen conceptual model:
i. Using the scenarios generated for the online booking facility,

produce a storyboard for the task of booking a ticket for one of
your conceptual models. Show it to two or three potential users
and get some informal feedback.

ii. Now develop a card-based prototype from the use case for the
task of booking a ticket, also incorporating feedback from part (i).
Show this new prototype to a different set of potential users and
get some more informal feedback.

c. Consider your product's concrete design. Sketch out the application's
landing page. Consider the layout, use of colors, navigation, audio,
animation, etc. While doing this, use the three main questions
introduced in Chapter 6 as guidance: Where am I? What's here?
Where can I go? Write one or two sentences explaining your choices,
and consider whether the choice is a usability consideration or a user
experience consideration.

d. Sketch out an experience map for your product. Use the scenarios
and personas you have already generated to explore the user's
experience. In particular, identify any new interaction issues that you
had not considered before, and suggest what you could do to
address them.

e. How does your product differ from applications that typically might
emerge from the Maker Movement? Do software development kits
have a role? If so, what is that role? If not, why do you think not?



Take a Quickvote on Chapter 11:
www.id-book.com/quickvotes/chapter11

http://www.id-book.com/quickvotes/chapter11


Summary

This chapter has explored the activities of design, prototyping, and
construction. Prototyping and scenarios are used throughout the design
process to test out ideas for feasibility and user acceptance. We have
looked at different forms of prototyping, and the activities have
encouraged you to think about and apply prototyping techniques in the
design process.

Key points
Prototyping may be low fidelity (such as paper-based) or high fidelity
(such as software-based).
High-fidelity prototypes may be vertical or horizontal.
Low-fidelity prototypes are quick and easy to produce and modify
and are used in the early stages of design.
Ready-made software and hardware components support the
creation of prototypes.
There are two aspects to the design activity: conceptual design and
concrete design.
Conceptual design develops an outline of what people can do with a
product and what concepts are needed to understand how to interact
with it, while concrete design specifies the details of the design such
as layout and navigation.
We have explored three approaches to help you develop an initial
conceptual model: interface metaphors, interaction styles, and
interface styles.
An initial conceptual model may be expanded by considering which
functions the product will perform (and which the user will perform),
how those functions are related, and what information is required to
support them.
Scenarios and prototypes can be used effectively in design to explore
ideas.
Physical computing kits and software development kits facilitate the
transition from design to construction.



Further Reading
BANZI, M. and SHILOH, M. (2014) Getting started with Arduino (3rd edn).
Maker Media Inc. This hands-on book provides an illustrated step-by-step
guide to learning about Arduino with lots of ideas for projects to work on. It
outlines what physical computing is in relation to interaction design and the
basics of electricity, electronics, and prototyping using the Arduino hardware
and software environment.
CARROLL, J. M. (ed.) (1995) Scenario-based Design. John Wiley & Sons,
Inc. This volume is an edited collection of papers arising from a three-day
workshop on use-oriented design. The book contains a variety of papers
including case studies of scenario use within design, and techniques for using
them with object-oriented development, task models, and usability
engineering. This is a good place to get a broad understanding of this form
of development.
GREENBERG, S., CARPENDALE, S., MARQUARDT, N. and BUXTON, B.
(2012) Sketching User Experiences. Morgan Kaufman. This is a practical
introduction to sketching. It explains why sketching is important and provides
very useful tips to get the reader into the habit of sketching. It is a
companion book to Buxton, B. (2007) Sketching User Experiences. Morgan
Kauffman, San Francisco.
LAZAR, J. (ed.) (2007) Universal Usability: Designing information systems
for diverse user populations. John Wiley & Sons Ltd. This book provides an
interesting selection of case studies that demonstrate how developers can
design for diverse populations to ensure universal usability.



Interview with the late Gary Marsden

Gary Marsden died suddenly and unexpectedly in December 2013. He
was only 43. He was a professor in the Computer Science Department
at the University of Cape Town. His research interests spanned mobile
interaction, computer science, design and ICT for Development. He is a
co-author of a book published in 2015, with Matt Jones and Simon
Robinson, entitled, There's Not an App for That: Mobile User Experience
Design for Life. He was also a co-author of Mobile Interaction Design,
which was published in 2006. He won the 2007 ACM SIGCHI Social
Impact Award for his research in using mobile technology in the
developing world. He made a big impression on the HCI world. We have
decided to keep his interview from the 3rd edition.
Gary, can you tell us about your research and why you do it?
My work involves creating digital technology for people living in Africa.
Most of this work is based on designing software and interfaces for
mobile cellular handsets as this is currently the most prevalent digital
technology within Africa.
Because the technology is deployed in Africa, we work within a different
design space than those working in more developed parts of the world.
For instance, we assume that users have no access to personal
computers or high-speed Internet connections. We must also take into
account different literacy levels in our users and the cultures from which
they come. Not only does this affect the technology we create, but the



methods we use to create it.

As a computer science professional, I want to understand how to create
digital systems that are relevant and usable by the people purchasing
them. For many people here, buying a cellular handset is a significant
investment and I want to make sure that the discipline of interaction
design is able to help deliver a product which maximizes the purchaser's
investment.
How do you know if the systems that you build are what people want and
need?
This is currently a hotly debated topic in the field and it is only recently
that there has been sufficient work from which to draw conclusions.
The first challenge crops up in designing a system for people who have
very little exposure to technology. For many of our users, they have no
experience of digital technology beyond using a simple cellular handset.
Therefore, participatory techniques, where users are asked to become
co-designers, can be problematic as they have no abstract notions of
basic ideas like the separation between hardware and software. To
overcome this, we often take a technology probe approach, allowing
users to comment on a high-fidelity prototype rather than require them to
make abstract decisions about a series of paper sketches.
For many of the systems we build, we are interested in more than simple
measures of efficiency and effectiveness. Sure, it is important that
technology is usable, but in the resource-constrained environment, it is
critical that the technology is useful; money is too scarce to spend on
something that does not significantly improve livelihood.
To measure impact on people and communities we often borrow from the
literature on development and measure issues like domestification – the
extent to which a technology is appropriated into someone's day-to-day
living. In a lot of our work we also partner with non-governmental
organizations (NGOs) who are based in a community and are looking for
research partners to provide digital solutions to problems they meet – for
instance, we have worked with a voter education NGO that wanted to
use digital technology to better inform voters about their choices in an
upcoming election. In that project we would adopt the goals of the NGO
(how much people understand their voting choices) as part of the
success criteria for our project. Often NGOs have sophisticated
instruments to measure the impact they are having, as their funding relies
on it. We can use those instruments to measure our impact.



To understand how our participants truly feel about a system, we use
‘polyphonic’ assessment, as reported by Bill Gaver. The method employs
unbiased journalists who interview users and report their assessment of
the system. We have adopted this approach in our work and found it to
be highly effective in gaining feedback on our systems. Furthermore, it
overcomes a strong Hawthorne effect experienced by researchers who
work in resource poor environments – users are so grateful for the
attention and resources being given them, they rate any system highly in
an attempt to please the researchers and keep them investing in that
community.
At present, there is no clear consensus about how best to evaluate
technology deployments in developing world communities, but it is clear
that the technology cannot be evaluated solely on a human–computer
interaction level, but needs to be considered on a livelihoods and
community impact level.
Have you encountered any big surprises in your work?
My work seems to be endlessly surprising which, as a researcher, is
highly stimulating. The first surprise when I moved here 12 years ago,
was the penetration of mobile handsets. In an era when handsets were
considered a luxury in Europe (1999), I saw people living in shacks
talking on their mobile handsets. Clearly domestification was not an issue
for cellular technology.
When I started to run research projects in Africa, I was surprised by the
extent to which much HCI research and methods incorporated
assumptions based in the developed world – for example, the issue I
mentioned earlier around participatory design. Also, the early HCI
literature I read on the internationalization of interfaces did not stand me
in good stead. For example, my colleague, Marion Walton, built one
interface consisting of a single button on a screen. We asked
participants to click on the button, but one participant was unable to do
this. When we pointed out the button to him, he said, ‘That is not a
button, that is a picture of a button.’ Of course, he was correct and we
learnt something valuable that day about visual culture.
Finally, the environment in Africa leads to surprises. The strangest
problem I have had was trying to fix a computer in rural Zambia that had
suddenly stopped working. On taking the casing off, I discovered white
ants had eaten the green resin out of the circuit board and used it to
build a nest over the power supply (where it was warm). Although it now
looked like a beautiful lace, the motherboard could not be salvaged.



What are your hopes for the future?
My hope and my passion are to create a new generation of African
computer scientists who create technology for their continent. Whilst the
work I am engaged in may be helping to some small degree, it is not
sustainable for outside people or teams to create new technology for
everyone who lives in the developing world. As an educator, I believe the
solution is to teach interaction design in African universities and empower
Africans to create the technology that is most appropriate to them and
their environment. 


	Series Page
	Title Page
	Copyright
	What's Inside
	Chapter 1: What is Interaction Design?
	1.1 Introduction
	1.2 Good and Poor Design
	1.3 What Is Interaction Design?
	1.4 The User Experience
	1.5 The Process of Interaction Design
	1.6 Interaction Design and the User Experience
	Interview with Harry Brignull

	Chapter 2: Understanding and Conceptualizing Interaction
	2.1 Introduction
	2.2 Understanding the Problem Space and Conceptualizing Interaction
	2.3 Conceptual Models
	2.4 Interface Metaphors
	2.5 Interaction Types
	2.6 Paradigms, Visions, Theories, Models, and Frameworks
	Interview with Kees Dorst

	Chapter 3: Cognitive Aspects
	3.1 Introduction
	3.2 What Is Cognition?
	3.3 Cognitive Frameworks

	Chapter 4: Social Interaction
	4.1 Introduction
	4.2 Being Social
	4.3 Face-to-Face Conversations
	4.4 Remote Conversations
	4.5 Telepresence
	4.6 Co-presence

	Chapter 5: Emotional Interaction
	5.1 Introduction
	5.2 Emotions and the User Experience
	5.3 Expressive Interfaces
	5.4 Annoying Interfaces
	5.5 Detecting Emotions and Emotional Technology
	5.6 Persuasive Technologies and Behavioral Change
	5.7 Anthropomorphism and Zoomorphism

	Chapter 6: Interfaces
	6.1 Introduction
	6.2 Interface Types
	6.3 Natural User Interfaces and Beyond
	6.4 Which Interface?
	Interview with Leah Beuchley

	Chapter 7: Data Gathering
	7.1 Introduction
	7.2 Five Key Issues
	7.3 Data Recording
	7.4 Interviews
	7.5 Questionnaires
	7.6 Observation
	7.7 Choosing and Combining Techniques

	Chapter 8: Data Analysis, Interpretation, and Presentation
	8.1 Introduction
	8.2 Qualitative and Quantitative
	8.3 Simple Quantitative Analysis
	8.4 Simple Qualitative Analysis
	8.5 Tools to Support Data Analysis
	8.6 Using Theoretical Frameworks
	8.7 Presenting the Findings

	Chapter 9: The Process of Interaction Design
	9.1 Introduction
	9.2 What Is Involved in Interaction Design?
	9.3 Some Practical Issues
	Interview with Ellen Gottesdiener

	Chapter 10: Establishing Requirements
	10.1 Introduction
	10.2 What, How, and Why?
	10.3 What Are Requirements?
	10.4 Data Gathering for Requirements
	10.5 Data Analysis, Interpretation, and Presentation
	10.6 Task Description
	10.7 Task Analysis

	Chapter 11: Design, Prototyping, and Construction
	11.1 Introduction
	11.2 Prototyping
	11.3 Conceptual Design
	11.4 Concrete Design
	11.5 Using Scenarios
	11.6 Generating Prototypes
	11.7 Construction
	Interview with the Late Gary Marsden

	Chapter 12: Interaction Design in Practice
	12.1 Introduction
	12.2 AgileUX
	12.3 Design Patterns
	12.4 Open Source Resources
	12.5 Tools for Interaction Design

	Chapter 13: Introducing Evaluation
	13.1 Introduction
	13.2 The Why, What, Where, and When of Evaluation
	13.3 Types of Evaluation
	13.4 Evaluation Case Studies
	13.5 What Did We Learn from the Case Studies?
	13.6 Other Issues to Consider when Doing Evaluation

	Chapter 14: Evaluation Studies: From Controlled to Natural Settings
	14.1 Introduction
	14.2 Usability Testing
	14.3 Conducting Experiments
	14.4 Field Studies
	Interview with Danah Boyd

	Chapter 15: Evaluation: Inspections, Analytics, and Models
	15.1 Introduction
	15.2 Inspections: Heuristic Evaluation and Walkthroughs
	15.3 Analytics
	15.4 Predictive Models

	References
	Index
	End User License Agreement

