Synthesis

Reading Reflection

Discuss in groups

- How would the different synthesis approaches described in the reading affect the user interaction model?
- How would the approaches described in the reading apply or not apply to the various synthesis project ideas you brainstormed during our first synthesis week?

Reading Key Takeaways

Figure 3.2: Counterexample-guided inductive synthesis.

- Distinguishing inputs-2 programs match our spec. How will we find the one we want? Ask the user what we should do on this next input, for which the programs produce different outputs.
- Syntactic bias-as we've already discussed, language shapes the search space
- SyGuS-SyGuS solvers can be a really useful starting point for a new synthesis project! See Fig 3.10 for how nice the programs are.

SyGuS string example

```
(set-logic SLIA)
(synth-fun f ((name String)) String
    ((Start String (ntString))
    (ntString String (name " " "." "Dr." (str.++ ntString ntString)
        (str.replace ntString ntString ntString) (str.at ntString ntInt) (int.to.str ntInt)
        (str.substr ntString ntInt ntInt)))
    (ntInt Int (0 1 2 (+ ntInt ntInt) (- ntInt ntInt) (str.len ntString)
        (str.to.int ntString) (str.indexof ntString ntString ntInt)))
    (ntBool Bool (true false (str.prefixof ntString ntString)
        (str.suffixof ntString ntString) (str.contains ntString ntString)))))
(declare-var name String)
(constraint (= (f "Nancy FreeHafer") "Dr. Nancy"))
(constraint (= (f "Andrew Cencici") "Dr. Andrew"))
(constraint (= (f "Jan Kotas") "Dr. Jan"))
(constraint (= (f "Mariya Sergienko") "Dr. Mariya"))
(check-synth)
```


Reflections on Rosette

- Concise program -> quite complex and sophisticated synthesizers
- Opacity
- Control

Today's topic: SMT

The Rosette Language

Logical Constraints
Answers!

SMT Solvers

OK, what's SMT?

Satisfiability Modulo Theories

ok, and what's satisfiability??

Let's back up

- SAT: Boolean satisfiability problem; also sometimes called SATISFIABILITY
- Given a Boolean formula, is there an interpretation of the formula that satisfies it? Can we replace the variables of the Boolean formula with the values TRUE or FALSE such that the formula evaluates to TRUE?
- If yes, the formula is satisfiable
- If no assignment out of all possible assignments makes the formula TRUE, it's unsatisfiable
- Examples:
- $p \wedge q$ is satisfiable; $(p=T R U E, q=T R U E)$
- $p \wedge \neg p$ is unsatisfiable
- SAT is NP-complete
- ...but that hasn't stopped folks from building some seriously efficient SAT solvers and using them to solve real problems

Next few slides shamelessly lifted from...

SAT Solving Basics

Emina Torlak

emina@cs.washington.edu

Syntax of propositional logic

$$
(\neg \boldsymbol{p} \wedge T) \vee(\boldsymbol{q} \rightarrow \perp)
$$

Syntax of propositional logic

$$
(\neg \boldsymbol{p} \wedge T) \vee(\boldsymbol{q} \rightarrow \perp)
$$

Atom

$$
\text { truth symbols: }\rceil \text { ("true"), } \perp \text { ("false") }
$$

propositional variables: p, q, r, \ldots

Syntax of propositional logic

$$
(\neg \boldsymbol{p} \wedge T) \vee(\mathbf{q} \rightarrow \perp)
$$

```
Atom truth symbols: T ("true"), }\perp\mathrm{ ("false")
propositional variables: p,q,r,\ldots
Literal
    an atom \alpha or its negation }\neg
```


Syntax of propositional logic

$$
(\neg \boldsymbol{p} \wedge T) \vee(\mathbf{q} \rightarrow \perp)
$$

| Atom | $\begin{array}{l}\text { truth symbols: } T \text { ("true"), } \perp \text { ("false") } \\ \text { propositional variables: } p, q, r, \ldots\end{array}$ |
| :--- | :--- | :--- |
| Literal | an atom α or its negation $\neg \alpha$ |$]$.

Semantics of propositional logic: interpretations

An interpretation I for a propositional formula
F maps every variable in F to a truth value:

$$
I:\{p \mapsto \text { true }, q \mapsto \text { false, } \ldots\}
$$

Semantics of propositional logic: interpretations

An interpretation I for a propositional formula
F maps every variable in F to a truth value:

$$
I:\{p \mapsto \text { true }, q \mapsto \text { false, } \ldots\}
$$

I is a satisfying interpretation of F, written as $I \vDash F$, if F evaluates to true under I.
I is a falsifying interpretation of F, written as $I \nLeftarrow F$, if F evaluates to false under I.

Semantics of propositional logic: interpretations

An interpretation I for a propositional formula
F maps every variable in F to a truth value:

$$
I:\{p \mapsto \text { true }, q \mapsto \text { false, } \ldots\}
$$

I is a satisfying interpretation of F, written as $I \vDash F$, if F evaluates to true under I.
I is a falsifying interpretation of F, written as $I \nRightarrow F$, if F evaluates to false under I.

A satisfying interpretation is also called a model.

Satisfiability \& validity of propositional formulas

F is satisfiable iff $I \vDash F$ for some I.
F is valid iff $I \vDash F$ for all I.

Satisfiability \& validity of propositional formulas

F is satisfiable iff $I \vDash F$ for some I.
F is valid iff $I \vDash F$ for all I.

Duality of satisfiability and validity:
F is valid iff $\neg F$ is unsatisfiable.

Satisfiability \& validity of propositional formulas

F is satisfiable iff $I \vDash F$ for some I.
F is valid iff $I \vDash F$ for all I.

> Duality of satisfiability and validity:
F is valid iff $\neg F$ is unsatisfiable.
If we have a procedure for
checking satisfiability, we can also check validity of propositional formulas, and vice versa.

Techniques for deciding satisfiability $\&$ validity

Techniques for deciding satisfiability \& validity

Proof by search: enumerating interpretations

		F: $\quad(p \wedge q) \rightarrow(p \vee \neg q)$			F	Valid.
p	q	$p \wedge q$	$\neg q$	$p \vee \neg q$		
0	0	0	1	I	1	
0	1	0	0	0	I	
1	0	0	,	1	,	
1	1	1	0	1	1	

5 minute break

Now that we know about SAT...

- Ok so...what's SMT?
- Satisfiability (SAT) Modulo Theories

Next few slides shamelessly lifted from...

Satisfiability Modulo Theories

Emina Torlak
emina@cs.washington.edu

Satisfiability Modulo Theories (SMT)

Syntax of First-Order Logic (FOL)

Logical symbols

- Connectives: $\neg, \wedge, \vee, \rightarrow, \leftrightarrow$
- Parentheses: ()
X Quantifiers: \forall, \exists
Non-logical symbols
- Constants: x, y, z
- N-ary functions: f,g
- N -ary predicates: p, q
X Variables: u, v, w

We will only consider the quantifier-free fragment of FOL.

In particular, we will consider quantifier-free ground formulas.

Semantics of FOL: example

Universe

- A non-empty set of values
- Finite or (un)countably infinite

Interpretation

- Maps a constant symbol c to an element of $U: I[c] \in U$
- Maps an n-ary function symbol f to a function $\mathrm{f}_{\mathrm{i}}: \mathrm{Un} \rightarrow \mathrm{U}$
- Maps an n-ary predicate symbol p to an n-ary relation $p I \subseteq U^{n}$

$$
\begin{aligned}
& U=\{*, *\} \\
& 1[x]=\text { - } \\
& 1[y]=
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{I}[\mathrm{P}]=\{\langle\rightarrow\rangle,\langle \rangle\rangle \\
& \langle U, \mathrm{l}\rangle \vDash \mathrm{p}(\mathrm{f}(\mathrm{y}), \mathrm{f}(\mathrm{f}(\mathrm{x}))) \text { ? }
\end{aligned}
$$

You decide!
Take 1 min .

Satisfiability and validity of FOL

```
F is satisfiable iff M\vDashF for some
structure M = \langleU,I\rangle.
F is valid iff M}FF\mathrm{ for all structures
M = \langleU,I\rangle.
```

Duality of satisfi ability and validity:
F is valid iff $\neg F$ is unsatisfiable.

Common theories

Equality (and uninterpreted functions)

- $x=g(y)$

Fixed-width bitvectors

- (b >> I) = c

Linear arithmetic (over \mathbf{R} and \mathbf{Z})

- $2 x+y \leq 5$

Arrays

- $a[i]=x$

Theory of equality with uninterpreted functions

Signature: $\{=, x, y, z, \ldots, f, g, \ldots, p, q, \ldots\}$

- The binary predicate $=$ is interpreted.
- All constant, function, and predicate symbols are uninterpreted.

Axioms

- $\forall x . x=x$
- $\forall x, y \cdot x=y \rightarrow y=x$
- $\forall x, y, z . x=y \wedge y=z \rightarrow x=z$
- $\forall x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n .}\left(x_{1}=y_{1} \wedge \ldots \wedge x_{n}=y_{n}\right) \rightarrow\left(f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)\right)$
- $\forall x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n .}\left(x_{1}=y_{\mid} \wedge \ldots \wedge x_{n}=y_{n}\right) \rightarrow\left(p\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow p\left(y_{1}, \ldots, y_{n}\right)\right)$

Deciding $\mathbf{T}=$

- Conjunctions of literals modulo $T=$ is decidable in polynomial time.

T= example: checking program equivalence

```
int abs(int y) {
    return y<0 ? -y : y;
}
int sq(int y) {
    return y*y;
}
int sqabs(int y) {
    return abs(y)*abs(y);
}
```


T= example: checking program equivalence

```
int abs(int y) {
    return y<0 ? -y : y;
}
int sq(int y) {
    return y*y;
}
int sqabs(int y) {
    return abs(y)*abs(y);
}
```

Are $\mathbf{s q}$ and sqabs equivalent on all 128 -bit integers?

T= example: checking program equivalence

```
int abs(int y) {
    return y<0 ? -y : y;
}
int sq(int y) {
    return y*y;
}
int sqabs(int y) {
    return abs(y)*abs(y);
}
```

Are sq and sqabs equivalent on all 128 -bit integers?

Yes, but the solver takes a while to return an answer because
reasoning about multiplication is expensive.

T= example: checking program equivalence

```
int abs(int y) {
    return y<0 ? -y : y;
}
int sq(int y) {
    return y*y;
}
int sqabs(int y) {
    return abs(y)*abs(y);
}
```

Are sq and sqabs equivalent on all 128 -bit integers?

Yes, but the solver takes a while to return an answer because
reasoning about multiplication is expensive.

What happens if we replace the multiplication with an uninterpreted function?

Theory of fixed-width bitvectors

Signature

- Fixed-width words modeling machine ints, longs, ...
- Arithmetic operations: bvadd, bvsub, bvmul, ...
- Bitwise operations: bvand, bvor, bvnot, ...
- Comparison predicates: bvlt, bvgt, ...
- Equality: =
- Expanded with all constant symbols: x, y, z, \ldots

Deciding $\mathbf{T b v}$

- NP-complete.

Theories of linear integer and real arithmetic

Signature

- Integers (or reals)
- Arithmetic operations: multiplication by an integer (or real) number,,+- .
- Predicates: $=, \leq$
- Expanded with all constant symbols: x, y, z, \ldots

Deciding Tlia and Tlra

- NP-complete for linear integer arithmetic (LIA).
- Polynomial time for linear real arithmetic (LRA).
- Polynomial time for difference logic (conjunctions of the form $x-y \leq c$, where c is an integer or real number).

LIA example: compiler optimization

```
for (i=1; i<=10; i++) {
a[j+i] = a[j];
```

\}

A LIA formula that is unsatisfiable iff this transformation is valid:

```
int v = a[j];
for (i=1; i<=10; i++) {
    a[j+i] = v;
}
```


LIA example: compiler optimization

```
for (i=1; i<=10; i++) {
a[j+i] = a[j];
}
A LIA formula that is unsatisfiable iff
this transformation is valid:
(i\geqI)^(i\leq10)^
(j+i= j)
```

int $v=a[j]$;
for (i=1; i<=10; i++) \{
$a[j+i]=v$;
\}

Theory of arrays

Signature

- Array operations: read, write
- Equality: =
- Expanded with all constant symbols: x, y, z, \ldots

Axioms

- $\forall \mathrm{a}, \mathrm{i}, \mathrm{v}$. read(write $(\mathrm{a}, \mathrm{i}, \mathrm{v}), \mathrm{i})=\mathrm{v}$
- $\forall \mathrm{a}, \mathrm{i}, \mathrm{j}, \mathrm{v} . \neg(\mathrm{i}=\mathrm{j}) \rightarrow(\operatorname{read}($ write $(\mathrm{a}, \mathrm{i}, \mathrm{v}), \mathrm{j})=\operatorname{read}(\mathrm{a}, \mathrm{j}))$
- $\forall \mathrm{a}, \mathrm{b} .(\forall \mathrm{i} . \operatorname{read}(\mathrm{a}, \mathrm{i})=\operatorname{read}(\mathrm{b}, \mathrm{i})) \rightarrow \mathrm{a}=\mathrm{b}$

Deciding $\mathbf{T A}_{A}$

- Satisfiability problem: NP-complete.
- Used in many software verification tools to model memory

Basically...

- SAT lets us say simple things
- SMT lets us say...other simple things. But more complicated than SAT!
- And it's enough that we can get to some interesting tasks

SMT activity

