
Cognitive Models of
Programming

CS294-184: Building User-Centered Programming Tools UC Berkeley Sarah E. Chasins 10/20/20

Reading Reflection

• Did you notice that you gained richer schemas over the
course of your own programming journey?

• What do you think of the critique of structure editors as
being too close to the structure of the language instead of
schemas?

• What key insight or insights (if any) stood out to you as
being relevant to your future PL or programming tool
design work?
• To the problems you uncovered in your user Zoom call?

These slides draw heavily from Chapter 3 of Software Design
—Cognitive Aspects, but I’m going to emphasize a particular
subset

No assignment this week!

Approaches

• Knowledge-Centered: It’s all about what syntactic knowledge, semantic
knowledge, and schematic knowledge you’ve stored up

• Strategy-Centered: It’s all about the strategies you use for applying the
knowledge types to build up programs

• Organization-Centered: It’s all about how the design process/design
activity is organized. Do we start with a high-level plan, work down
breadth-first until we have a program? Do we pursue an iterative design
process, planning, drafting, and editing?

Knowledge-Centered
Approaches

Programming Knowledge
Researchers in program design are generally agreed that there
are three types of knowledge that serve to distinguish experts
from novices:
1. Syntactic knowledge, which defines the syntactic and lexical
elements of a programming language, for example, the fact
that, in C, the if statement takes the form if (condition)
statement.
2. Semantic knowledge, which refers to the concepts, such as
the notion of a variable, that make it possible to understand
what happens when a line of code is executed.
3. Schematic knowledge, that is, programming schemas that
represent generic solutions.

People reinvent the ideas from
this slide over and over again

Elementary through Complex

Elementary programming schemas represent knowledge about control
structures and variables. Think of a frame with slots. See fig. For example,
a counter variable schema can be formalized as following:
• Goal: count the occurrences of an action
• Initialization: count:= n
• Update: count:=count+increment
• Type: integer
• Context: loop
Algorithmic schemas or complex programming schemas represent
knowledge about structure of algorithms. For example, some programmers
will be familiar with a variety of algorithms for sorting and searching. These
algorithms are more or less abstract and more or less independent of the
programming language, and they can be described as made up of
elementary schemas. For example, a sequential search schema is less
abstract than a search schema and can be described as being composed,
in part, of a counter variable schema.

This is chart is showing the data after controlling
for experience!

There’s a whole history of work showing chess
masters can memorize boards really well…unless

it’s a board you couldn’t reach from real play.

Ok, back to programming…

First day of FORTRAN class

Grad students and faculty

Real prog Shuffled
prog

Strategy-Centered Approaches

Axes

prog input prog output

• Top-down vs. Bottom-up
• Forward vs. Backward
• Breadth-First vs. Depth-First

CDN → Strategy Changes

• Cognitive dimensions of notation proven to affect
which strategies programmers apply

Organization-Centered
Approaches

• This is the strand that’s most concerned with observing how
people actually organize their work

• Also the strand that recognizes the iterative nature of so
much programming
• Plan
• Code
• Revise

Organization-Centered

Organization-Centered:
Programming + Memory

• See this body of literature and especially work by Simon P.
Davies for work on the effects of working memory on
programming

Organization-Centered:
Programming + Text

• See this body of literature and especially work by Rachel K. E. Bellamy and
Simon P. Davies for more on how programmers co-design code and
supporting natural language
• Also see Bellamy’s related work on pseudocode

• “Four categories of pseudo-code emerged from the data:
diagrams, semiformal annotations, coding on paper, and text…
Results suggest that programmers use pseudo-code and pen and
paper to reduce the cognitive complexity of the programming
task.”
- What does pseudo-code do? A psychological analysis of the use
of pseudo-code by experienced programmers. By Rachel K. E.
Bellamy

Novices vs. Experts

Compared with novices, experts:
• construct a more complete problem representation before embarking on the

process of solving it
•use more rules of discourse
•use more meta-cognitive knowledge about programming tasks and about

suitable and optimal strategies for completing them; know a number of possible
strategies for completing a task and are able to compare them to select a good
approach

•are capable of generating several alternative solutions before making a choice
•use more external devices, particularly as external memory; their design strategy

is top-down and forward for familiar and not too complex problems, while
novices go bottom-up and backwards

•do some aspects of programming tasks completely automatically

Novices vs. Experts

Susan Wiedenbeck’s work is especially
useful here

Why??

• Other than being interested in the findings of individual papers in this
space, why are we taking the time to cover this?
• So you know the key terms when you need to find these papers to

answer design questions of your own
• But above all, because this line of research offers a glimpse of how

much we can learn about programmers’ internal state from well-
designed experiments!
• Read Thursday’s paper with this framing in mind
• With the right stimuli, we can start inferring really low-level details

of programmers’ mental models

Activity!
• Section 3.6 of the reading for today suggests ways we could make programming

tools more suited to programmers’ real needs.
• With your group, review Section 3.6 and brainstorm an intervention that draws on

these recommendations. Feel free to draw from other parts of the reading if the 3.6
ideas don’t inspire you. Your intervention could be:
• A new PL, programming environment, or programming tool
• Modifications to an existing PL, programming environment, or programming tool

• Write up 2-3 slides on your intervention
• At least one slide should be devoted to the concepts or passages from the

reading that support your design
• Add your slides here: https://docs.google.com/presentation/d/

1FjdKGEyRpK8aP3xJvIkZ56NRBqQy7XrJXpMHghnX6jM/edit?usp=sharing
• Choose someone to present your slides when we come back together as a group

https://docs.google.com/presentation/d/1FjdKGEyRpK8aP3xJvIkZ56NRBqQy7XrJXpMHghnX6jM/edit?usp=sharing
https://docs.google.com/presentation/d/1FjdKGEyRpK8aP3xJvIkZ56NRBqQy7XrJXpMHghnX6jM/edit?usp=sharing

