Program Slicing

CS294-184: Building User-Centered Programming Tools UC Berkeley Sarah E. Chasins 10/15/20

Ok, let's get a look at this AST

thing

SUm acCcC |
P I‘Oa acCcC Look at that beautiful AST!
i 1 Moduéce)éy:[

(i 11) : ASSj%?r(]enoﬂ,

col _offset=0,

end lineno=1,

end col offset=11,

targets=[Name(lineno=1, col offset=0, end lineno=1, end col offset=7, id='sum acc', ctx=Store(),
value=Constant(lineno=1, col offset=10, end lineno=1, end col offset=11, value=0, kind=None),
type comment=None,

Sum_acc Sum_acc 1
prod_acc - prod_acc 1
i=1+1
print("sum", sum_acc)
print("prod", prod_acc)

) »
Assign(

lineno=2,

col offset=0,

end_lineno=2,

end col offset=12,

targets=[Name(lineno=2, col offset=0, end lineno=2, end col offset=8, id='prod acc', ctx=Store(;

Our PYthon program (the onhe we're anaIyZing, value=Constant(lineno=2, col _offset=11, end_lineno=2, end col offset=12, value=1, kind=None),

type comment=None,
)

Assign(

lineno=3,

col offset=0,

end lineno=3,

end col offset=5,

targets=[Name(lineno=3, col offset=0, end lineno=3, end col offset=1l, id="1"', ctx=Store())],
value=Constant(lineno=3, col offset=4, end lineno=3, end col offset=5, value=1l, kind=None),
type _comment=None,

OO OUT S WN K-

(o

not the one we’re running)

code — open(filename).read()
12 tree - ast.parse(code)
astpretty.pprint(tree)

)
While(

lineno=4,

col offset=0,

P’ I . end_lineno=7/,
Here's the one we're running... end col of T}
test=Compare(

lineno=4,
col ofirset=7

Next, we need to know how
control flows through the program

Enter...the control flow graph (CFG)

We'll build up a graph representing all the paths we coulo
take through the program during execution

Another entry in our theme of
/ ‘there are so many ways to
< represent programs’!
do until while case for

if-then-else

SUm_acc 0
prod_acc 1
1 1
(i < 11):
Sum_acc Sum_acc 1

prod_acc prod_acc

i=1+1
print("sum", sum_acc)
print("prod", prod_acc)

Program to analyze

CFGs

0: start

'

I: sum_acc=0

|

2: prod_acc =1

3:1=1

— G whiles i< 1T

5: sum_acc = sum_acc + 1

'

6: prod_acc = prod_acc *

i

N

T:1=1+1

F

8: print(‘'sum’, sum_acc)

'

9: print('prod', prod_acc)

'

0: stop

The CFG!

But how do we get the slice
from this thing?

Starting from a CFG, we'll compute data tlow information about
the set of relevant variables at each node

n |Statement | ref(n) | def(n) | relevant(n)

We'll use this * and this ~ to figure out this
Referenced at node n

Defined at node n

Program Slicing: Straignt-Line Code

Slice tor node n and variables V
1. Initialize the relevant sets ot all nodes to the empty set.
2. |Insert all variables of V into relevant(n).

3. For n'simmediate predecessor m, compute relevant(m) by:
// tirst exclude all variables defined at m (because we're overwriting it)
relevant(m) := relevant(n) - def(m)
// it m defines a variable that’s relevant at n
it def(m) in relevant(n) then
// include the variables that are referenced at m
relevant(m) := relevant(m) u ref(m)

include m in the slice
end
4. Repeat (3) for m's immediate predecessors, and work backwards in the CFG until
we reach the start node or the relevant set is empty

Bolded n are included

in the slice

slice for <8, {a}>

/\

Step 2:
Step 3:

Step 3:

Step 3:
Step 3:
Step 3:
Step 3:

Step 3:

n | Statement | ref(n) | def(n) | relevant(n)
1 b= b
2 C=2 C b
3 |d=3 d b, C
4 a=d d a b, C
S| |d=b+d b, d d b, C
6 b=b+1 b b b, C
7 |la=b+c b, C a b, C
8 | printa a a
relevant(8) = {a}
relevant(7) = relevant(8) - def(7) = {a} - {a}
relevant(7) = relevant(7) U ref(7) = {} U {b, c}

Since node 7 defines a variable relevant at node 8, itis included into the slice.

relevant(6) = relevant(7) - def(6)
relevant(6) = relevant(6) U ref(6)

= {b, c} - {b}
= {c} U {b}

Since node 6 defines a variable relevant at node 7, itis included into the slice.

relevant(5) = relevant(6) - def(5) = {b, c} - {d}
relevant(4) = relevant(5) - def(4) = {b, c} - {a}
relevant(3) = relevant(4) - def(3) = {b, c} - {d}
relevant(2) = relevant(3) - def(2) = {b, c}-{c}
relevant(2) = relevant(2) U ref(2) = {b} U {}

Since node 2 defines a variable relevant at node 3, itis included into the slice.

relevant(1) = relevant(2)-def(1)
relevant(1) = relevant(1) U ref(1)

= {b} - {b}
= {0V

Since node 1 defines a variable relevant at node 2, itis included into the slice.

L I | U | A B |
[ot B suthon 3 suthon. BN st BN suthen. |
O
O
S ?

il
e B cutn
[Ny S

What will happen it we add an it
statement into our program?

® Any guesses?

Moving towards handling
control flow...

® \e have to extend our earlier approach to:
® |f we add a node m to our slice:
® also add the control set of m to our slice
® (the control set is the set of predicates that directly control its execution)
® for each node cincluded based on being in the control set:
® make a new slice! Starting at node ¢ for variables ref(c). The
original slice (for <n, V>) will now also include all nodes in the slice
for <c, ref(c)>
® Union the relevant sets (e.g., relevant(m4) and relevant(my)) for cases where we
have multiple descendants with a shared predecessor
® (Remember that once we have control flow, we can have multiple
descendants!)

n Statement | ref(n) | def(n) | control(n) | relevant(n)

1 b=1 b

2 c=2 C b

3 d=3 d b, C

4 a=d d a b,c,d

5 if athen a b,c,d

6 d=b+d| b,d d 5 b, d

7 c=b+d| b,d C 5 b, d
else

8 b=b+1 b b 5 b, C

9 d=b+1 b d 5 b, C
endif b, C

10 |a=b+c b, C a b, C

11 printa a a

slice for <11, {a}>

Step 2:
Step 3:

Step 3:
Step 3:

Step 3:

Step 3:

Step 3:
Step 3:
Step 3:

Step 3:

Step 3:

relevant(11) = {a}

relevant(10) = relevant(11) - def(10) = {a} - {a} = {}
relevant(10) = relevant(10) U ref(10) = { U {b, c} = {b, c}
Since node 10 defines a variable relevant at node 11, itis included into the slice.
relevant(9) = relevant(10) - def(9) = {b, c} - {d} = {b, c}
relevant(8) = relevant(9) - def(8) = {b, c} - {b} = {c}
relevant(8) = relevant(8) L ref(8) = {c} U {b} = {b, c}
Since node 8 defines a variable relevant at node 9, it is included into the slice.

Since control(8) = 5, node 5 is included into the slice.

The slice for node 5 with respect to ref(5) is computed below.

relevant(7) = relevant(10)-def(7) = {b, c} - {c} = {b}
relevant(7) = relevant(7) L ref(7) = {b} L {b, d} = {b, d}
Since node 7 defines a variable relevant at node 10, itis included into the slice.

Since control(7) = 5, node S is included into the slice.

The slice for node 5 with respect to ref(5) is computed below.

relevant(6) = relevant(7) - def(6) = {b, d} - {d} = {b}
relevant(6) = relevant(6) L ref(6) = {b} U {b, d} = {b, d}
Since node 6 defines a variable relevant at node 7, it is included into the slice.
relevant(5) = relevant(6) U relevant(8) = {b,d} U {b, c} = {b, c, d}
relevant(4) = relevant(5) - def(4) = {b, c, d} - {a} = {b, c, d}
relevant(3) = relevant(4) - def(3) = {b, c, d} - {d} = {b, c}
relevant(3) = relevant(3) L ref(3) = {b,c} U {} = {b, c}
Since node 3 defines a variable relevant at node 4, it is included into the slice.
relevant(2) = relevant(3) - def(2) = {b, c}-{c} = {b}
relevant(2) = relevant(2) U ref(2) = {b} U {} = {b}
Since node 2 defines a variable relevant at node 3, it is included into the slice.
relevant(1) = relevant(2) - def(1) = {b} - {b} = {}
relevant(1) = relevant(1) U ref(1) = {Ju{} = {}

Since node 1 defines a variable relevant at node 2, it is included into the slice.

slice currently contains: 10, 8,7, 6, 5, 3, 2, 1

We're not done yet! Remember slice for

node 5 w.r.t. ref(5)!

Let’s take care of that subslice

n Statement | ref(n) | def(n) | control(n) | relevant(n)
1 b=1 b
2 c=2 C
3 d=3 d {
4 a=d d a {d}
5 if athen a {a}
6 d=b+d| b,d d 3
7 c=b+d| b,d C 3

else
8 b=b+1 b b 3
9 d=b+1 b d 3

endif
10 |a=b+c b, C a
11 printa a

slice for <5, {a}>

Step 2:
Step 3:

Step 3:

relevant(5) = {a}

relevant(4) = relevant(5) - def(4) = {a} - {a} = {}
Since node 4 defines a variable relevant at node 5, it is included into the slice.
relevant(4) = relevant(4) L ref(4) = {} L {d} = {d}
relevant(3) = relevant(4) - def(3) = {d} - {d} = {}
Since node 3 defines a variable relevant at node 4, it is included into the slice.
relevant(3) = relevant(3) U ref(3) = {}U{} = {}

Since the relevant set is empty, no more nodes will be included into the slice.

final slice contains: 10, 8, 7, 6,5, 4, 3, 2, 1

More reading

® The nice worked examples in these slides come from:
® Program Slicing for Object-Oriented Programming
Languages, Christoph Steind| (dissertation)
® |f you want to dig in on these specific worked examples, take
a look at Chapter 3 ot the dissertation:

® http://www.ssw.uni-linz.ac.at/General/Staft/CS/Research/
Publications/Ste9%a.htmll

® A more comprehensive resource:

® Cooper and Torczon's

Engineering a Compiler textbook

® http://www.r-5.org/files/books/computers/compilers/

writing/Keith_Cooper

Linda Torczon-

Engineering_a_Compiler-EN.pdf

http://www.ssw.uni-linz.ac.at/General/Staff/CS/Research/Publications/Ste99a.html
http://www.ssw.uni-linz.ac.at/General/Staff/CS/Research/Publications/Ste99a.html
http://www.r-5.org/files/books/computers/compilers/writing/Keith_Cooper_Linda_Torczon-Engineering_a_Compiler-EN.pdf
http://www.r-5.org/files/books/computers/compilers/writing/Keith_Cooper_Linda_Torczon-Engineering_a_Compiler-EN.pdf
http://www.r-5.org/files/books/computers/compilers/writing/Keith_Cooper_Linda_Torczon-Engineering_a_Compiler-EN.pdf

What

about loops?

® |f we have loops, we have to keep iterating over the CFG

until our slice and our relevant sets stabilize

® You won't be requi

red to handle loops for your homework,

but it's pretty fun i

“you're interested :)

| et’s do this!

® Fire up your

® This is going to be our last programming assignment of the

semester, so get ready to do some language hacking :)

