Synthesis

CS294-184: Building User-Centered Programming Tools UC Berkeley Sarah E. Chasins 9/29/20

Reading Reflection

Discuss in groups

® How would the difterent synthesis approaches described in the
reading affect the user interaction model?

® How would the approaches described in the reading apply or not
apply to the various synthesis project ideas you brainstormed last
Tuesday?

® Please also take a couple minutes to discuss what you learned from
the Rosette assignment!

Reading Key Takeaways

Search space Specification ¢
4 N Candidate program P [p
Solver i Verifier
(search component) | (validation component) o C EG | S|
~ “ Counterexample z= o .
X Fail v' Success

Figure 3.2: Counterexample-guided inductive synthesis.

® Distinguishing inputs—2 programs match our spec. How will we find the one
we want? Ask the user what we should do on this next input, for which the
programs produce different outputs.

® Syntactic bias—as we've already discussed, language shapes the search space

® SyGuS—SyGuS solvers can be a really usetul starting point for a new synthesis
oroject! See Fig 3.10 for how nice the programs are.

SyGusS string example

(set-logic SLIA)

(synth-fun £ ((name String)) String
((Start String (ntString))
(ntString String (name " " "." "Dr." (str.++ ntString ntString)

(str.replace ntString ntString ntString) (str.at ntString ntInt) (int.to.str ntInt)
(str.substr ntString ntInt ntiInt)))

(ntInt Int (0 1 2 (+ ntInt ntInt) (- ntInt ntInt) (str.len ntString)
(str.to.int ntString) (str.indexof ntString ntString ntInt)))
(ntBool Bool (true false (str.prefixof ntString ntString)

(str.suffixof ntString ntString) (str.contains ntString ntString)))))

(declare-var name String)

(constraint (= (f "Nancy FreeHafer") "Dr. Nancy"))
(constraint (= (£ "Andrew Cencici'") "Dr. Andrew"))
(constraint (= (£ "Jan Kotas'") "Dr. Jan"))
(constraint (= (f "Mariya Sergienko'") "Dr. Mariya'))

(check-synth)

What did you learn from the Rosette
assignment?

A tew learning goals

You might have learned...
® That you can write a synthesizer!
® That there are many possible ways of designing the

grammar, many possible ways of designing the spec Y AN\
. , | /{ ®) \ S'r:riram you actually
® A visceral understanding of the difference between finding | rogamsmacng))

, Space of (the observationj/
\ programs

a program that meets your spec and the program you S

\ 4
\
f
J

J

’ \
II
J

J

/

actually want. :) Especially in example-based specs. g

® The limits of what you can control in Rosette. T

https://people.csail.mit.edu/asolar/SynthesisCourse/Lecture2.htm

Armando Solar-Lezama

https://people.csail.mit.edu/asolar/SynthesisCourse/Lecture2.htm

One (of many) solutions

(define-synthax (is-title x depth)
#:base (choose #t #f)
#:else (choose
#t #f
(if ((choose < >) ((choose get-font-size get-num-words) x) (?7))
(is-title x (- depth 1))
(is-title x (- depth 1)))))

(define (is-title-synthesized x)
(is-title x 1))

(define-symbolic i integer?)
(print-forms
(synthesize
#:forall (list i)
#:quarantee (assert (or
(< i 0)
(>= i (length texts))
(equal? (is-title-synthesized (list-ref texts 1)) (get-is-title (list-ref texts 1i)))))))

Welcome to DrRacket, version 7.8 [3m].
Language: rosette/safe, with debugging; memory limit: 256 MB.
20

450
#f
/Users/schasins/Documents/titleDetection.rkt:49:0

'(define (is-title-synthesized x) (if (> (get-font-size x) 31) #t #f))
>

kdefine texts

[list (list 20 450 #f) (list 30 1200 #f) (list 70 4 #t) (list 72 9 #t) (list 9 4 #f) (list 72 200 #f)])

(define (get-font-size t)
(list-ref t 0))

(define (get-num-words t)
(list-ref t 1))

(define (get-is-title t)
(list-ref t 2))

(get-font-size (list-ref texts 0))
(get-num-words (list-ref texts 0))
(get-is-title (list-ref texts 0))

; Now write a synthesizer that can learn a program for labeling texts as titles
; or not titles based on the examples in our texts list.

; Hint: if you end up using the #:forall (list i) approach in your solution,
; remember that i1 can be less than @ and greater than the length of the texts
: list,

; Defines a grammar
(define-synthax (is-title x depth)
#:base (choose #t #f)
#:else (choose
#t #f
(if ((choose < =) ((choose get-font-size get-num-words) x) (?77))
(is-title x (- depth 1))
(is-title x (- depth 1)))))

(define (is-title-synthesized x)
(is-title x 2))

(define-symbolic i integer?)
(print-forms
(synthesize
#:forall (list i)
#:quarantee (assert (or
(< i 0)
(>= 1 (length texts))

And this is adaptable as we
get more complicatea
inputs from our user...

Original input-output pairs
(list 20 450 #f) (list 30 1200 #f) (list 70 4 #t)
Here we add 3 more

(list 72 9 #t) (list 9 4 #f) (list 72 200 #f)])
mavbe a footnote maybe a pull-out
quote

The same synthesizer now produces:

'(define (is-title-synthesized x)
(if (< (get-font-size x) 69) #f (if (< (get-num—words x) 200) #t #f)))

(equal? (is-title-synthesized (list-ref texts i)) (get-is-title (list-ref texts i)))))))

Welcome to DrRacket, version 7.8 [3m)].
Language: rosette/safe, with debugging; memory limit: 256 MB.

20
450
#f
/Users/schasins/Documents/titleDetection.rkt:49:0
'(define (is-title-synthesized x)
(if (< (get-font-size x) 69) #f (if (< (get-num-words x) 200) #t #f)))

(define (hole depth arity non-terms terms)
.) ; Expression hole (Section 2.2)

(define (Faiglave ppo grf fences)
.) ; Axioms from Figure 4

; Common components of memory model specifications
(define (SameAddr X) (& (-> X X) (join loc (~ loc))))
(define rfi (& rf (join thd (~ thd))))

(define rfe (- rf (join thd (~ thd))))

Rosette for more realistic tasks...

; Expression holes for Faiglave model (Section 3.2)
(define ppo
(hole 4 2 (list + - -> & SameAddr)
(list po dep Event Read Write Fence Atomic)))

-
({ - sl 'y
’ ’
& -',._v/'. Y
. T :
/:(S

AL
-
. -
-~

n— . . -
~ - o v L
o OO0 o~ / / -
7 - »
”

Loy '343??2%?é%f
o , ‘2

:..-)C‘: ./,'«:
T 74
, # S

-,

R

(define grf (hole 4 2 (list + - -> & SameAddr)
(list rf rfi rfe none univ)))

; X86 fences are not cumulative

(define fences (-> none none))

R

—

; Final sketch y *£T:Z%L
(define x86-sketch (Faiglave ppo grf fences)) Jﬂ?ai ﬁ
“ay I nthesizing Memory Models from
(a) Framework sketch Fajgaye Sy 8 y :
3 . Framework Sketches and Litmus Tests
zdziizgepg;jamblguatlon 1-.;121 if; & — ;‘ James Bornholt =~ Emina Torlak
(& po (- (-> Event (+ Write Read)) .S s AT e 4 University of Washington, USA

(-> (- Write Atomic) Read))))
(define grfg (- rf (join thd (~ thd))))
(define TSOp (Faiglave PPOe grfe fences))

; After resolving 4 ambiguities

(define ppos (- po (-> (- Write Atomic) Read)))
(define grf; (- rf (join thd (~ thd))))

(define TSO; (Faiglave Ppos grfs fences))

(b) Synthesized models 7SOy and TSO4

Figure 9. The framework sketch Fjjgjave for synthesizing a
memory model for the x86 architecture (a), and synthesized
models 7SOq and TSO4 before and after resolving ambigui-
ties (b). The expression holes for ppo and grf define a search
space of size 2924, as described in Figure 8. The fences rela-
tion is empty because x86 fences are not cumulative.

{bornholt, emina}@cs.washington.edu

Abstract

A memory consistency model specifies which writes to shared
memory a given read may see. Ambiguities or errors in these
specifications can lead to bugs in both compilers and applica-
tions. Yet architectures usually define their memory models
with prose and litmus tests—small concurrent programs that
demonstrate allowed and forbidden outcomes. Recent work
has formalized the memory models of common architectures
through substantial manual effort, but as new architectures
emerge, there is a growing need for tools to aid these efforts.

This paper presents MemSynth, a synthesis-aided sys-
tem for reasoning about axiomatic specifications of memory
models. MemSynth takes as input a set of litmus tests and
a framework sketch that defines a class of memory models.
The sketch comprises a set of axioms with missing expres-
sions (or holes). Given these inputs, MemSynth synthesizes
a completion of the axioms—i.e., a memory model—that
gives the desired outcome on all tests. The MemSynth engine

1. Introduction

Reasoning about concurrent code requires a memory con-
sistency model that specifies the memory reordering behav-
1ors the hardware will expose. Architectures typically define
their memory consistency model with prose and litmus tests,
small programs that illustrate allowed and forbidden out-
comes. These imprecise definitions make reasoning about
correctness difficult for both developers and tool builders.
Researchers have therefore argued for formalizing memory
models [49], and have recently created formal models for
common architectures, including x86 [40] and PowerPC [30].
But each such formalization required several person-years of
effort and several revisions (e.g., [5, 6, 35, 38, 39]).

These formalization efforts have been aided by tools for
verification and comparison of memory models. Verification
tools check whether a model allows a litmus test [6, 36, 45],
while comparison tools synthesize litmus tests on which two
models disagree [28, 47]. These tools provide verification and

D001 ONUT W WD =

45
46
47
43
49

50
51

52

53
54

55
56

57

58
59

60

61
62

Figure 4. A ToyRISC interpreter using Serval (in Rosette).

#lang rosette

; import serval core functions with prefix "serval:"
(require (prefix-in serval: serval/lib/core))

; Cpu state: program counter and integer registers
(struct cpu (pc regs) #:mutable)

; interpret a program from a given cpu state
(define (interpret c program)
(serval:split-pc [cpu pc] ¢
: fetch an instruction to execute
(define insn (fetch c¢ program))
. decode an instruction into (opcode, rd, rs, imm)
(match insn
[(list opcode rd rs imm)
: execute the instruction
(execute ¢ opcode rd rs imm)
; recursively interpret a program until
(when (not (equal? opcode 'ret))
(interpret c program))1)))

ret”

: fetch an instruction based on the current pc
(define (fetch ¢ program)
(define pc (cpu-pc ¢))
: the behavior is undefined if pc is out-of-bounds
(serval:bug-on (< pc 8))
(serval:bug-on (>= pc (vector-length program)))
» return the instruction at program[pc)
(vector-ref program pc))

; shortcut for getting the value of register rs
(define (cpu-reg ¢ rs)
(vector-ref (cpu-regs c) rs))

; shortcut for setting register rd to value v
(define (set-cpu-reg! c rd v)
(vector-set! (cpu-regs c) rd v))

; execute one instruction
(define (execute ¢ opcode rd rs imm)
(define pc (cpu-pc c¢))
(case opcode
[(ret) ; return
(set-cpu-pc! ¢ 9)]
[(bnez) ; branch to imm if rs is nonzero
(if (! (= (cpu-reg c rs) 9))
(set-cpu-pc! ¢ imm)
(set-cpu-pc! ¢ (+ 1 pc)))]
[(sgtz) ; set rd to 1 if rs > @, @ otherwise
(set-cpu-pc! ¢ (+ 1 pc))
(if (> (cpu-reg c rs) 0)
(set-cpu-reg! c rd 1)
(set-cpu-reg! ¢ rd 9))]
[(sltz) ; set rd to 1 if rs < @, @ otherwise
(set-cpu-pc! ¢ (+ 1 pc))
(if (< (cpu-reg c rs) 0)
(set-cpu-reg! c rd 1)
(set-cpu-reg! ¢ rd 9))]
[(11) - load imm into rd
(set-cpu-pc! ¢ (+ 1 pc))
(set-cpu-reg! ¢ rd imm)]))

Rosette 1

or more realistic tasks...

Scaling symbolic evaluation for automated
verification of systems code with Serval

Luke Nelson James Bornholt Ronghui Gu
University of Washington University of Washington Columbia University
Andrew Baumann Emina Torlak Xi Wang
Microsoft Research University of Washington University of Washington

Abstract

This paper presents Serval, a framework for developing au-
tomated verifiers for systems software. Serval provides an
extensible infrastructure for creating verifiers by lifting in-
terpreters under symbolic evaluation, and a systematic ap-
proach to identifying and repairing verification performance
bottlenecks using symbolic profiling and optimizations.
Using Serval, we build automated verifiers for the RISC-V,
x86-32, LLVM, and BPF instruction sets. We report our ex-
perience of retrofitting CertiKOS and Komodo, two systems
previously verified using Coq and Dafny, respectively, for
automated verification using Serval, and discuss trade-offs
of different verification methodologies. In addition, we apply
Serval to the Keystone security monitor and the BPF compil-
ers in the Linux kernel, and uncover 18 new bugs through
verification, all confirmed and fixed by developers.

ACM Reference Format:
Luke Nelson, James Bornholt, Ronghui Gu, Andrew Baumann, Em-
ina Torlak and X1 Wane 2019 Scaline svmbolic evaluation for

But the benefits of formal verification come at a consider-
able cost. Writing proofs requires a time investment that is
usually measured in person-years, and the size of proofs can
be several times or even more than an order of magnitude
larger than that of implementation code [49: §7.2].

The push-button verification approach [65, 74, 75] frees
developers from such proof burden through co-design of
systems and verifiers to achieve a high degree of automation,
at the cost of generality. This approach asks developers to
design interfaces to be finite so that the semantics of each in-
terface operation (such as a system call) is expressible as a set
of traces of bounded length (i.e., the operation can be imple-
mented without using unbounded loops). Given the problem
of verifying a finite implementation against its specification,
a domain-specific automated verifier reduces this problem
to a satisfiability query using symbolic evaluation [32] and
discharges the query with a solver such as Z3 [31].

While promising, this co-design approach raises three
open questions: How can we write automated verifiers that

1 1 ™ s

Reflections on Rosette

® Concise program -> quite complex and sophisticated
synthesizers

® Opacity

® Control

P
'o

o
— 7,

= | | "

Today'’s topic: SMT

You " \ e i
A

Spec Answers!
The Rosette Language
Logical Constraints Answers!

SMT Solvers

OK, what's SMT?
Satistiability Modulo Theories

k ok, and what's

satistiability??

Let's back up

® SAT: Boolean satisfiability problem; also sometimes called SATISFIABILITY
® Given a Boolean formula, is there an interpretation of the formula that satisfies it?
Can we replace the variables of the Boolean formula with the values TRUE or
FALSE such that the formula evaluates to TRUE?
® |f yes, the formula is satisfiable
® |f no assignment out ot all possible assignments makes the formula TRUE, it's

unsatistiable
® Examples:
® p A g is satisfiable; (p=TRUE, g=TRUE)
® p A — pis unsatisfiable
® SAT is NP-complete
® ...but that hasn’t stopped folks from building some seriously efficient SAT solvers

and using them to solve real problems

Next tfew slides shamelessly
ifted from...

SAT Solving Basics

Emina Torlak

emina@cs.washington.edu

https://courses.cs.washington.edu/courses/cse507/19au/calendar.html

Syntax of propositional logic

CPATIV@— 1)

Syntax of propositional logic

CPAT)V(@— 1)

Atom truth symbols: T (“true”), L (“false”)
propositional variables: p,q,r, ...

Syntax of propositional logic

CPAT)V(@— 1)

Atom truth symbols: T (“true”), L (“false”)
propositional variables: p,q,r, ...

Literal an atom or its negation "X

Syntax of propositional logic

Atom

Literal

Formula

CPAT)V(@— 1)

truth symbols: T (“true”), L (“false”)
propositional variables: p,q,r, ...

an atom X or its negation X

an atom or the application of a logical connective
to formulas Fy, Fy:

—F “not” (negation)

Fi AF; “and” (conjunction)
Fi v F; “or” (disjunction)
Fi — F2 “implies” (implication)

Fi o F2 “if and only if” (iff

Semantics of propositional logic: interpretations

An interpretation |/ for a propositional formula
F maps every variable in F to a truth value:

| :{p+r true,q ~ false,...}

Semantics of propositional logic: interpretations

An interpretation |/ for a propositional formula
F maps every variable in F to a truth value:

| :{p+r true,q ~ false,...}

| is a satisfying interpretation of F, written
as | = F, if F evaluates to true under |.

| is a falsifying interpretation of F, written
as | ¥ F,if F evaluates to false under |I.

Semantics of propositional logic: interpretations

An interpretation |/ for a propositional formula
F maps every variable in F to a truth value:

| :{p+r true,q ~ false,...}

| is a satisfying interpretation of F, written A satisfying interpretation
as | = F, if F evaluates to true under |. is also called a model.

| is a falsifying interpretation of F, written
as | ¥ F,if F evaluates to false under |I.

Satisfiability & validity of propositional formulas

F is satisfiable iff | = F for some |.

F is valid iff | = F for all |.

Satisfiability & validity of propositional formulas

F is satisfiable iff | = F for some |.

F is valid iff | = F for all |.

Duality of satisfiability and validity:

F is valid iff =F is unsatisfiable.

Satisfiability & validity of propositional formulas

F is satisfiable iff | = F for some |.

F is valid iff | = F for all |.

If we have a procedure for
checking satisfiability, we can also

F is valid iff =F is unsatisfiable. check validity of propositional
formulas, and vice versa.

Duality of satisfiability and validity:

Techniques for deciding satisfiability & validity

Search Deduction

SAT solver

Techniques for deciding satisfiability & validity

Search

Enumerate all interpretations
(i.e., build a truth table), and
check that they satisfy the
formula.

Deduction

Assume the formula is invalid,
apply proof rules, and check
for contradiction in every
branch of the proof tree.

SAT solver

F: (pArq) — (pVq)
bAg 7q bV q
0 | |
0 0 0
0 | |

Proof by search: enumerating interpretations

Valid.

Questions?

5 minute breakout chat
5 minute whole-group discussion

10 minute break

Now that we know about SAT...

® Ok seriously, what's SMT?

® Satisfiability (SAT) Modulo Theories

Next tfew slides shamelessly
ifted from...

Satisfiability Modulo Theories

Emina Torlak

emina@cs.washington.edu

https://courses.cs.washington.edu/courses/cse507/19au/calendar.html

Satisfiability Modulo Theories (SMT)

SMT solver

Satisfiability Modulo Theories (SMT)

First-Order Logic

SMT solver

Satisfiability Modulo Theories (SMT)

Theories

First-Order Logic

SMT solver

Satisfiability Modulo Theories (SMT)

(un)satisfiable

SMT solver

Theories First-Order Logic

Syntax of First-Order Logic (FOL)

Logical symbols
- Connectives: 7, A, V, 2, &

» Parentheses: ()

X Quantifiers: Vv, 3

We will only consider the

quantifier-free fragment of

Non-logical symbols FOL.

- Constants: X,Y,z
 N-ary functions: f, g
* N-ary predicates: p, q

XVariabIes: u, vV, W : : :
In particular, we will consider

quantifier-free ground
formulas.

Semantics of FOL: example

Universe
* A non-empty set of values
» Finite or (un)countably infinite U = {Jo-, 8}
Interpretation X] = &
+ Maps a constant symbol ¢ to an y] = &
element of U: I[c] e U f] = {6 > 4 8 -9}
+ Maps an n-ary function symbol f] = {¢300), (6 @)
to a function fi: Ur» = U p] = {C#,00, ¥, 7}
* Maps an n-ary predicate symbol U, 1) E p(f(y), f(f(x))) ?

p to an n-ary relation p; € Un
You decide!

Take 1 min, write

in Zoom chat.

Satisfiability and validity of FOL

F is satisfiable iff M = F for some
structure M = (U, D).

F is valid iff M = F for all structures
M=, D.

Duality of satisfiability and validity:

F is valid iff =F is unsatisfiable.

Common theories

Equality (and uninterpreted functions)
© x=g(y)

Fixed-width bitvectors
- (b>>1)=c

Linear arithmetic (over R and Z)
*+ 2x+y <5

Arrays
 afi] = x

Theory of equality with uninterpreted functions

Signhature: {=, X, Y, Z, cces Ty S5 ccey Ps Uy oce}

* The binary predicate = is interpreted.
» All constant, function, and predicate symbols are uninterpreted.

Axioms
* VX. X=X
* VX, Y. X=y ?Yy=X
* VX, Z. X=YAY=Z F?PX=Z
* VXl ooy Xny Yy ee s Yoo (XIS Y1IA oot AXn = Yn) = (F(X1, .oty Xn) = (Y1, ..., ¥0))
* VXl ooy Xny Yy ee s Yo (XTI = Y1 A woo AXn =Yn) = (P(XIy ..es Xn) < P(YI, ---, ¥n))

Deciding T-

» Conijunctions of literals modulo T= is decidable in polynomial time.

T= example: checking program equivalence

int abs(int y) {
return y<@ ? -y : vy;
I3

int sq(int y) {
return yxy,;

}

int sqgabs(int y) {
return abs(y)xabs(y);

}

T= example: checking program equivalence

int abs(int y) { Are sq and sqabs equivalent

, return y<@ 7 -y : y; on all 128-bit integers?

int sq(int y) {
return yxy,;

}

int sqgabs(int y) {
return abs(y)xabs(y);

}

T= example: checking program equivalence

int abs(int y) { Are sq and sqabs equivalent
) return y<@ 7 -y : y; on all 128-bit integers?
Yes, but the solver takes a while
int sq(int y) { to return an answer because
return yxy; reasoning about multiplication is
b expensive.

int sqgabs(int y) {
return abs(y)xabs(y);

}

T= example: checking program equivalence

int abs(int y) { Are sq and sqabs equivalent
) return y<@ 7 -y : y; on all 128-bit integers?
Yes, but the solver takes a while
int sq(int y) { to return an answer because
return yxy; reasoning about multiplication is
b expensive.
int sgabs(int y) { What happens if we replace the
return abs(y)x*xabs(y); multiplication with an

} uninterpreted function?

Theory of fixed-width bitvectors

Sighature

* Fixed-width words modeling machine ints, longs, ...
* Arithmetic operations: bvadd, bvsub, bvmul, ...
* Bitwise operations: bvand, bvor, bvnot, ...

- Comparison predicates: bvlt, bvgt, ...
* Equality: =

* Expanded with all constant symbols: x,y, z, ...

Deciding Tgv

* NP-complete.

Theories of linear integer and real arithmetic

Signature
* Integers (or reals)
* Arithmetic operations: multiplication by an integer (or real) number, +, -.
* Predicates: =, <.

- Expanded with all constant symbols: x,y, z, ...

Deciding TLia and Trra
* NP-complete for linear integer arithmetic (LIA).

* Polynomial time for linear real arithmetic (LRA).

* Polynomial time for difference logic (conjunctions of the form x -y < c,
where c is an integer or real number).

LIA example: compiler optimization

for (i=1; i<=10; i++) {
alj+i] = aljl;
¥ A LIA formula that is unsatisfiable iff
this transformation is valid:

int v = aljl;
for (i=1; i<=10; i++) {
alj+i]l = v;

}

LIA example: compiler optimization

for (i=1; i<=10; i++) {
alj+il = aljl;

} A LIA formula that is unsatisfiable iff

this transformation is valid:

i=D)A@(i=<10)A
(+i=)

int v = aljl;
for (i=1; i<=10; i++) {
alj+i]l = v;

}

Theory of arrays

Sighature
* Array operations: read, write
* Equality: =
- Expanded with all constant symbols: x,y, z, ...
Axioms
* Va,i, v.read(write(a, i, v),i) = v
* Va,i,j,v. (i =) = (read(write(a, i, V),) = read(a, j))
* Va,b.(Vi.read(a,i) = read(b,i)) > a=b
Deciding Ta

- Satisfiability problem: NP-complete.
* Used in many software verification tools to model memory.

Basically...

® SAT lets us say simple things

® SMT lets us say...other simple things. But more
complicated than SAT!

® And it's enough that we can get to some interesting tasks

® On Thursday we'll start playing around with some
interesting tasks!

Install before Tuesday’s class:
/3 SMT solver

We'll use the Python Z3 bindings. First make sure you have Python installed. Then install
the Z3 bindings. (https://pypi.org/project/z3-solver/)

pip i1nstall z3-solver

pip 1nstall z3-solver --user
Then make sure you can run this program, which I'll also upload in Slack.

from z3 1mport *

X Int('x

")
y = Int(C'y")
solve(x > 1, v >1, x *y + 3 == 7)

To think about for next reading

® | ke last reading, no need to memorize details—mostly want
you to know these techniques exist and why we care about
them.

® Qur silly Python synthesizer from last week wasn't very
scalable, but there are ways to make enumerative search

scale!

® Hierarchical search is the fancy way ot saying you can split the
problem into multiple subproblems which you can solve
separately—this is a key idea for many important synthesis
tasks, and you can apply it yourself in many domains. This
can improve scalability dramatically. Read the example extra
carefully.

