Synthesis

CS294-184: Building User-Centered Programming Tools UC Berkeley Sarah E. Chasins 9/22/20

Reading Reflection

Discuss in groups

® |f you could express your intent to the computer in any way at all, how
would you want to write programs?
® \Vhat input would you have the computer take?
® How would the interaction between you and the computer work?

® \Vhat was confusing about synthesis from the first reading/your
understanding of synthesis so tar?
® |t's ok if this is lots of things! We'll be getting hands-on soon, which

should clear up a lot of contfusions. :)
® Are there applications that you'd expect are amenable to synthesis but

that haven’t made it into the literature yet? (Weren’t mentioned in
Chapter 2.)

Reading Key Takeaways

® The core challenges in synthesis:
® Scalability/size of the program space
® Capturing user intent—What's a good spec? How do we get it?
® The variety of plausible specs we can get from users
® |/O examples, demonstrations, logical specs, natural language,
programs with holes, equivalent programs (!)
® The variety of search techniques
® Enumerative, constraint-based, deductive, statistical
® And at a higher level, the fact that synthesis is not just one technique
® A general sense of the problems to which synthesis has been applied
so far

Thank you for your survey
answers!

How much time should we spend in the reading discussion breakout rooms?

19 responses

® < 10 minutes
@® 10-15 minutes
() 15-20 minutes
@ 20-25 minutes
@® > 25 minutes

How big should the reading discussion breakout rooms be?

19 responses

@® 2 students
@ 3 students
() 4 students
@ 5 students
@ 6 students

V ® > 6 students

| forgot to ask it it's ok that | “walk around” during group discussion time (come visit
breakout rooms). Feel free to let me know if you have strong feelings about this.

How much time should we spend in the assignment work breakout rooms?

19 responses

@ None

@® < 10 minutes
¢ 10-15 minutes
@® 15-20 minutes
@ 20-25 minutes
@® 25-30 minutes
@® > 30 minutes

How do you feel about the mini breaks in the middle?

19 responses

@ Please keep. | need coffee/water/just a
break from staring into the zoom void/
whatever.

@ Keep the breaks, but only about 5
minutes.

¢ Don't need 'em!

@ Keep the breaks, but only on days when
we've been sitting passively/listening t...

@ Keep the breaks, but only on days when
we've been active/doing activities.

Reading Discussion Format

® Secems like folks are really enjoying the breakout discussion groups
(awesomel)

® Also liking the whole-group processing after the breakout
discussions, want even more time for this

® (Sorry | didn't ask about the time allotted to that!)

® So we'll be expanding the part where we come together to
synthesize what we discussed in the breakout rooms

® Also wanted a little more summary from me, so I'll be adding that

Other changes

® |'ll stop yanking you out of breakout rooms like that! The 60 secona

callback will return.

® This was the number 1 proposed change. Sorry!!
® Slide speed.

® |'ll slow it down. Feel free to send teedback through the semester.
® Assignments building on each other.

® This was unpopular. :) Future assignments will be standalone.
® Prepping for future readings.

® |'l| try to end each class with some ideas of what to look for in the

next day’s reading.

Why synthesis?

’ - P‘ RICY)
4 | &
L)
. ’ ‘ ; ' !

There are a few PL techniques

that just keep coming up in

HCI tasks!
By f?‘f ® Program synthesis
- e M‘ ® Projection/.S’.cruc:ture editors
stuff... . o S ® Program slicing
R v Others come up, but these

Synthesis seem to come up all the time.

Demo time

FlashFill

Do you have Excel installed? You can probably run this demo on your own
laptop while | run it on mine!

Automating String Processing in Spreadsheets using Input-Output Examples, Sumit Gulwani

Scythe
To run this one, head to: https://scythe.cs.washington.edu/demo

Synthesizing Highly Expressive SQL Queries from Input-Output Examples, Chenglong Wang

https://scythe.cs.washington.edu/demo

Helena
If you want to run this one, you have to install an extension: http://helena-
lang.org/install

Rousillon: Scraping Distributed Hierarchical Web Data, me & my collaborators :)

http://helena-lang.org/install
http://helena-lang.org/install

LENS

before after
cmp rl, #0
add 12, e, 87 asr 13, rl, #2
mov r3’ r3’ 1sr #29 add r2’ rl, r3, lsr #29
movge r2, rl, ldrb ro’ [ro’ r2, asXy #3]
ldrb 1r0, [r0, r2, asr #3] and r3, r2, #2438
; sub r3, rl, r3
bic rl, r2, #248
asr rli, r0O, r3
sub r3, rl, r3
and r0, rl1, #1
asr rl, rO, r3
and rO, rl1, #1
(b) (c)

| know, | know, not as photogenic, but it

makes programs much faster!!

Scaling up Superoptimization, Phitchaya Mangpo Phothilimthana

Falx
Coming soon to https://falx.cs.washington.edu/

Visualization by Example, Chenglong Wang

5 min break

Back up. What's program
synthesis?

Find a program P that meets a spec $(input, output):

Correctness Condition

/ \
IP.vx.P(x,P(x))

\ Find P

® \When to use synthesis:

® Ease-of-use/productivity: When writing ¢ is faster or easier
than writing P

® Correctness: when proving @ is easier than proving P

Hey, I've seen this before

| give computer a high-level Computer gives me back a low-
description of what | want it to do level program for doing it

Isithis] compilation ?

Synthesis vs. compilation

Compilation

Typically deterministic

Typically performs lowering
via a sequence of rewrite
rules

Synthesis

Searches a space of
possible programs

...or sometimes a space of
possible sequences of
rewrite rules! look, the line

is blurry _(V)_/

If it involves search, we
usually call it synthesis

Even if you don't take away anything else from
today’s lecture, take away that you can write a
synthesizer!

Even if you don't take away anything else from
today’s lecture, take away that you can write a
synthesizer!

What do we need to decide to
make a synthesizer?

Hint: 3 things

How does the user express what they want the program to do?
What space of programs is the synthesizer allowed to use?

What algorithm will the synthesizer use to search that space?

What do we need to decide to
make a synthesizer?

Hint: 3 things For today’s sample synthesizer, let’s pick...

How does the user express what they want the program to do?

Input-Output examples

What space of programs is the synthesizer allowed to use?

Anything in a Domain-Specific Language (DSL) of our choice
What algorithm will the synthesizer use to search that space?

S EnUmeration™ Which is to say...generating programs until we find one that works

o i
o NS i
el
R R e 2
PR -
TWE Wi g o}

Input-Output Examples

® Any work here?

® Nah, this is going to be pretty straightforward.

® Example:

({\\XII N 3,

\\

y" N 7},

\\

y" N 4},

\\y" R 12}’

23)

19)

31)

Can you guess it?? Did you already
synthesize this in your head?

Domain-Specific Language

® This one’s a classic, but for another domain we might
design something more customized

expr := N
v
(expr + expr)

(expr - expr)
(expr * expr)

Enumeration

level O: Ok, no luck so far. Let's just mash these
[0, 1, 2, 3, 4, y, x]

count: 7 together! In every possible combination!
SSF)GECZ: level 1 :

(o, 1, 2, 3, 4, y, x, (0+0), (0*0), (0-0), (O+1), (O*1), (O-1), (0+2), (0*2), (0-2),
({7x” YU o= Tk 23) (140), (140), (10), (141), (141), (1-1), (102), (13), (1-2), (103), (143), (1.
({"x" — 4, “y" - 4}, 19) 211y, (@), (oD, @4, (b, (2-2), (343, @, @3, (), (246, (3-8,
({"x" - 2, “y" - 12}, 31) (33, G75), (, (3, (40), (3, GH), (), (-0, G, (), (-,

(3+x), (3*x), (3-x), (4+0), (4*0), (4-0), (4+1), (4*1), (4-1), (4+2), (4*2), (4-2),

(4+3)I (4*3)1 (4_3)1 (4+4)I (4*4)1 (4_4)1 (4+Y)I (4*Y)I (4_Y)I (4+x)l (4*X), (4_x)l
(y+t0), (y*0), (y-0), (y+1), (y*1), (y-1), (y*2), (vy*2), (vy-2), (y+3), (y*3), (y-3),

Space Qf programs: (y+t4), (vy*4), (y-4), (yty), (y*y), (y-y), (y+x), (y*x), (y-x), (x+0), (x*0), (x-0),

(X+1)I (x*l)l (x_l)l (x+2)l (x*z)l (x_z)l (x+3)l (x*3)l (x_3)l (x+4)l (X*4), (x_4)l

(X+Y)I (x*y), (x-y), (xt+x), (x*x), (x-Xx)]
.]\[count: 154

!
W

EXPT . — . .
P Hm, still no luck. Keep mashing.
7) level 2 :
[or 1/ 2/ 3/ 4/ Y, X, (0+0)I (O*O)I (o_o)l (0+1)I (0*1)1 (0_1)1 (0+2)I (0*2)1
(0_2)1 (O+3)I (0*3)1 (0_3)1 (0+4)I (0*4)1 (0_4)1 (0+Y)I (O*Y)I (O_Y)I (0+x)l (O*X)I
(8)6[77” T EXpT) (0-x), (1+0), (1*0), (1-0), (1+1), (1*1), (1-1), (1+2), (1*2), (1-2), (1+3), (1*3),
_ (1_3)1 (1+4)I (1*4)1 (1_4)1 (1+Y)I (1*Y)I (1_Y)I (1+x)l (1*x)l (1_x)l (2+0)I (z*o)l
(expr - expr) (2-0), (2+#1), (2*1), (2-1), (2+2), (2%2), (2-2), (2+3), (2%3), (2-3), (2+8), (2*4),
%& (2_4)1 (2+Y)I (Z*Y)I (Z_Y)I (2+x)l (Z*X)I (z_x)l (3+0)I (3*0)1 (3_0)1 (3+1)I (3*1)1
(expr * expr) (3-1), (3+2), (3*2), (3-2), (3+3), (3%3), (3-3), (3+4), (3*4), (3-4), (3+y), (3*y),
(3-y), (3+x), (3*x), (3-x), (4+0), (4*0), (4-0), (4+1), (4*1), (4-1), (4t+t2), (4*2),
(4_2)1 (4+3)I (4*3)1 (4_3)1 (4+4)I (4*4)1 (4_4)1 (4+Y)I (4*Y)I (4_Y)I (4+x)l (4*x)l
(4_)I
(Y_)I
(X— 4 X ’ X ’ X- ’ X ’ X ’ X= ’ X ’ X ’ X- ’ X ’ X)I
(x_4)l (X+Y)I (X*Y)I (X_Y)I (X+x)l (x*x)l (x_x)l (0+0)I (O*O)I (O_O)I (0+1)I (0*1)1

VA o L AN 4 . L. " N y o) ™ % 1 42 .9 L. ™ \ 4 ' (N 42 0 . A N 4 (N 4 ! 4 . L.

Enumeration...pruned with Operational

Spec:

({\\X/I N 3’ \\y" R '7}’
({\\X" R 4’ \\y" R 4}’
(\\X" 2, \\y" N 12},

Space of programs:
N

exXpr .=
0

(expr + expr)
(expr - expr)

(expr * expr)

Equivalence

23)
19)
31)

level O:

[0, 1,
count:

2, 3,
7

level 1 :

[0, 1,

2, 3,

4, vy, %]

4, vy, X,

«—Which is the fancy program synthesis way of

saying “they do the same thing on the inputs

we care about.”

Ok, these are all just O0...which we already
have. Why'd you give me these???

(0+3)I (0*3)1 (0_3)1 (+)I (*)I (-)l

(140),
(1+4),
(2+1),
(2+y),
(3+2),
(3+x),
(4+43),
(y+0),
(yt+4),
(x+1),

(x+y),
count:

(1*0),
(1*4),
(2*1),
(2*y),
(3*2),
(3*x),
(4*3),
(y*0),
(y*4),
(x*1),
(x*y),
154

(1_0)1
(1_4)1
(2_1)1
(Z_Y)I
(3_2)1
(3-x),
(4_3)1
(Y_O)I
(Y_4)I
(x_l)l
(x_Y)l

(1+1),
(1+y),
(2+2),
(2+x),
(3+3),
(4+0),
(4+4),

(y+1),

(Yty),
(x+2),

(x+x),

(1*1),
(1*y),
(2*2),
(2*x),
(3*3),
(4*0),
(4*4),
(y*1),
(Y*Y)
(x*2),
(x*x),

(1_1)1
(1_Y)I
(2_2)1
(2_x)l
(3_3)1
(4_0)1
(4_4)1
(Y_l)l
(Y_Y)l
(x_z)l
(x-x)]

(O+1)I (0*1)1 (0_1)1 (0+2)I (0*2)1 (0_2)1

(O+y), (O0*y), (0-y),
(1+2)I (1*2)1 (1_2)1

(1+x),
(2+43),
(3+0),
(3+4),
(4+1),
(4+y),
(y+2) ,

(y+x),
(x+3),

(1*x),
(2*3),
(3*0),
(3*4),
(4*1),
(4*y),
(y*2),
(y*x),
(x*3),

(1_x)l
(2_3)1
(3_0)1
(3_4)1
(4_1)1
(4_Y)I
(Y_Z)I
(Y_x)l
(x_3)l

(0+x),
(1+3),
(2+0),
(2+4),
(3+1),
(3+y),
(4+2),
(4+x),
(y+3),
(x+0),
(x+4),

(0*x),
(1*3),
(2*0),
(2*4),
(3*1),
(3*Y),
(4*2),
(4*x),
(y*3),
(x*0),
(x*4),

(O_X)I
(1_3)1
(2_0)1
(2_4)1
(3_1)1
(3_Y)I
(4_2)1
(4_x)l
(Y_3)I
(x_o)l
(x_4)l

And eventually we'll find some that aren’t the same on all inputs, but are

the same on {"x" — 3, “y" = 7}, {"x" = 4, "y" = 4}, and {"x" — 2,

m_ 1

y" = 12}

This is exactly as simple as it looks. Seriously, you can write
this synthesizer in vanilla Python in one page. Let’s see it!

1 itertools
2 class Op:
3 ops "+": lambda a,b: a+b, "-": lambda a,b: a-b, "x": lambda a,b: a+b}

def __init__(self, a, op, b):

self.a a; self.op op; self.b b
def __repr__(self):
(e str(self.a) self.op + str(self.b) ")

def interpret(self, argDict):
g Op.opslself.opl(self.a.interpret(argDict), self.b.interpret(argDict))
10 class Val:
11 def __init__ (self, v):
12 self.v vV
13 def __repr__(self):

str(self.v) - T, .
def interpret(self, argDict): This one isn’t pruning at all.

16 setiv What do we do to prune with OE?

17 class Var:

18 def __init__ (self, n):
19 self.n n

20 def __repr__(self):

21 self.n

22 def interpret(self, argDict): Just an extra 6 lines!
23 argDict[self.n]

25 spec [({"x": 3, "y": 7}, 23),
26 ({"x": 4, "y": 4}, 19),
27 ({"x": 2, "y": 12}, 31)]

28 expected_outputs [output inputDict, output spec]
29 def test_against_spec(expr):
30 outputs [expr.interpret(inputDict) inputDict, output spec]
31 (outputs expected_outputs):
32 “found it!", expr
exit()
exprs [Val(x) X range(5)] [Var(x) X spec[0] [0].keys()]
"level 0:\n", exprs, "\ncount:", len(exprs)
expr exprs:

test_against_spec(expr)

ops Op.ops.keys()

41 level 0
42 (True):
level 1
44 "level", level, ":"
pair itertools.product(exprs, exprs):
op ops:

new_expr - Op(pair([@], op, pair[1])
test_against_spec(new_expr)
exprs.append(new_expr)

exprs, "\ncount:", len(exprs)

Sarahs-MBP:othermaterials schasins$ python onePageSynthesizer.py
level O:

[O I 35 A, Vel

count:

level

count:

level

. . count:
Prur"ng based on Operatl0n3| / level 3

Equivalence can cut down our found it! (3+(2*(y+x)))
Sarahs-MBP:othermaterials schasins$ python onePageSynthesizerOE. py

search space dramatically! level 0
| O, i S e ey]
count: 7/
level 1 :
And this is just at level 2! count: 63
level 2 :
count: 2051
level 3 :
found it! (3+(2*(y+x)))

So it you're ever watching a synthesis talk and get
confused...just remember enumeration. At a
sufficiently high level of abstraction, it's just going
through programs until it finds one that works.

We can make enumeration smarter

® Doesn’t have to be just start with the smallest program, then list all the programs in
order of size until you find one that works
® \We can have heuristics or language models that let us explore better/likelier
programs first instead of smaller programs first
® There are other ways of pruning (other than Operational Equivalence) that let us cut
out much more of the space
® \We can make smart choices about what constants to include
® This was the easy-to-write version, but there are many ways to make it more effective
® For a long time, the winner of the SyGuS competition (the primary competition for
people who write synthesizers) was an enumerative solver!
® This is a real techniquel

Quick brainstorm. What would
you like to synthesize?

Synthesis is like a buffet

I

—_—

S am =¥ Stochastic o =
st el synthesis %‘ |

e N
——

e ~
24~ 1 Deductive o >
7 s i Lalr g 7 £]

svnthesis™ . .. ¢

P LS S F ¥

Constraint- Enuimerative &=
o

based synthesis

‘(q‘v < - - '-
v R & o~ N4

synthesis & N . =

® This is not one technique that either applies or doesn’t apply to
your problem

® |t's a whole family of techniques

® Tackling a new problem, you'll probably be looking through a
host of existing approaches and tools...

® |f you read synth literature, you'll see very different domains

formalized in very different ways. This isn't accidental!

® ...and maybe inventing your own. Custom synthesizers are still
common

To think about for Thursday'’s
reading

® The issue of ambiguous specs. As designers of usable
tools, do we want to prevent ambiguous specs? [f yes,
how? Do we want to allow them? It yes, how does this
affect our synthesizer?

® \What constrains the design of a our target languages for
synthesis?

® \What's the tradeoft between designing for making the
synthesizer’s task easier vs. designing for the user of the
tool?

Please install before next class

https://docs.racket-lang.org/rosette-guide/ch_getting-started.html#%28part._sec~3aget%29

The Rosette Language

ABOUT DOWNLOAD DOCS APPS COURSES PAPERS

A brilliant language from

About Rosette Emina Torlak

Rosette is a solver-aided programming language that extends Racket with language
constructs for program synthesis, verification, and more. To verify or synthesize code,
Rosette compiles it to logical constraints solved with off-the-shelf SMT solvers. By
combining virtualized access to solvers with Racket's metaprogramming, Rosette

Mﬂllf\ﬁ :4‘ P g, N 4‘1\ AA\ If\lf\lf'\ Fa 3 llﬂ+|ﬂﬂﬁ:ﬁ "\II\IJ A Y IAV:GI\"\J':I'\H 4"\/\"'\ cf\l’ ™ N\’ l"\l"\l\ll 1 7% A "™ S \/f\l] A:MV\I\ 9

