
Need Finding for PL

CS294-184: Building User-Centered Programming Tools UC Berkeley Sarah E. Chasins 9/8/20

Reading Reflection
Discuss in groups
• Think back to before you learned about need finding

(whether that was from today’s readings or in the distant
past). Did you instinctively use need finding techniques
to find problems to work on? How?

• If/when you used need finding by instinct, did you mostly
focus on users with skills like yours?

• When was the last time you talked to someone and came
away with an idea for a new library, abstraction,
programming tool, or programming environment?

“If I had asked people what they wanted,
they would have said faster horses.”

• Need finding is not about asking participants what they
want and then doing what they say they want.

• Need finding isn’t even part of the brainstorming process!
We’re not deciding what to build or design here. We’re
just doing what the name says—finding needs.

• We’re finding problems. We’ll brainstorm solutions later.
• Good need finding also typically doesn’t involve asking

people what they want.

Show, Don’t Tell
• We want to structure our need finding interactions so that users show, don’t tell. Why?

• We could miss true things. Users don’t know all their needs! There are some that we could
observe that they’d never notice themselves.

• We could learn false things. Memory and introspection unreliable. (Startlingly reliable results in
psych.)

• We could learn true things poorly. Easy to come away with a shallow understanding of a need.

• Our number 1 need finding tool is observation—just watching participants do their thing

• Enforces this show-don’t-tell idea very naturally
• Unless you have very, very good reasons not to do contextual inquiry, I usually recommend

starting there!
• Note: global pandemic does count as a very, very good reason

PL Observation
• Watch a participant using their current programming tools.

• Where do they struggle or get frustrated?
• Where do they do things you’d do differently?
• Where do they have to hop out of their programming environment and look elsewhere or use an

extra tool?
• Where do they have an established workaround for a given issue?

• Give a participant a new programming tool, then look for the same questions.
• Give a participant similar tasks with multiple programming tools, same questions.
• Attend meetings with participants.

• I know, I know, boring. But…
• What concepts, information, data do they pull to mind, express, or draw easily? Which are

hard?
• What goals do they express that they haven’t tackled yet. Why?

• Especially useful for working with non-programmers

Contextual Inquiry for PL

• CI is the one where we watch people doing their
thing. We ask about their actions when we get
confused, when we don’t follow. But mostly we’re
trying to learn about their process. This is wildly
useful for PL design.

Contextual Inquiry for PL
Study 1. Observed 13

developers, tasks set by
researchers, unfamiliar

codebase.
Study 3. Observed 17

developers, developers’
own tasks.

Contextual Inquiry for PL

Amy J.

Observed 4 developers,
completed a total of 12

hours of contextual inquiry
(broken into 12 separate

sessions). Not researcher-
provided tasks, but course-

provided tasks.

Semi-CI Observation for PL

18 participants, 12
households. Home tour (!!)
followed by a think-aloud
study using one of two

home automation
programming paradigms.

(Researcher-assigned
tasks.)

How else can we observe in PL
contexts?

Observed student users
of two different

programming tools,
identified differences in

how they spent their time.
Observed 9 5th graders in

science class. Not
previously familiar with the

programming
environments. 10

meetings of 45-60 minutes
with the whole group.
Students split into 3

groups of 3 to work with
the programming tools.

Non-CI Observation for PL

Non-CI Observation for PL
Stack Overflow is a record

of real questions and
confusions that programmers
encounter in their practice.

Votes on answers offer
evidence of what kinds of
responses are helpful to

them. This is kind of a log of
observations! How can we

use this info to improve
compiler error messages,
which also offer feedback

when programming tasks go
wrong?

Non-CI Observation for PL

GitHub might not be a log of
actual user behavior, but at

least it’s a log of the
programs they end up with…

How else might we observe people
programming to find needs?

• In-lab observation, observation with assigned tasks as opposed to users’ own
• Found logs—stackoverflow, github, so on
• You can instrument a programming environment to log various user actions
• But don’t be creepy! (Easy to get intrusive with tracking)

• In a course context, you can instrument the automatic test infrastructure, if
applicable

• These days people stream themselves programming! You can watch those
• More ideas? Raise hand.

Show, Don’t Tell..the next best thing

• If you really can’t manage contextual inquiry, can you set up another way to do
observation?

• Ok, if you really can’t manage observation, what next?
• Get concrete. It gets us closer to “showing"
• “What’s hard about programming for you?”
• “In your most recent programming project, what was the most frustrating part? Can you

walk me through how it came up? Why it was frustrating? How you ultimately dealt with
it?”

• Get open-ended. Yes/No answers don’t give us a lot. Stories give us much more.
• “Do you prefer Python or R?”
• “Have you found that some programming tasks are much easier in different programming

languages? Can you tell me about the last time you found one of these and how?”

Semi-structured interview
to identify possible issues in
the programming process,

followed by survey to collect
quantitative evidence of

issues uncovered in
interviews.

Alternatives to Contextual
Inquiry for PL

Show, Don’t Tell
• Surveys — are they out?

• No! But we have to find ways to get them to “show” via the survey.
• Don’t ask how often they use construct A, ask them to upload their last program so you

can count uses of A

Show, Don’t Tell
• Surveys — are they out?

• No! But we have to find ways to get them to “show” via the survey.
• Don’t ask how often they use construct A, ask them to upload their last program so you

can count uses of A

Research Question: Are there gaps between program semantics and programmer expectations about semantics?

Tell version. “Describe some language features that you find surprising.”
Tell version. “Do you expect a new programming language to have static or dynamic scope?”
Show version. “What output do you expect here?” “And here?”

Outcome: Programmers weren’t consistent! In one program (survey question) they’d give answer consistent with static
scope, in another with dynamic scope.

Is this successful need finding? Yes! We didn’t find a solution—we can’t say ok, use static scope and programmers
won’t be surprised anymore. But that’s not the goal! The goal is to find problems, not solutions.

Goal isn’t even to find out what programmers want, even though the questions may make it look like that. (Remember,
asking is a bad way to figure that out…) It was to learn about mismatches between semantics and expectations, and by
finding programmer inconsistency they found mismatches.

And this inconsistency is another reason we don’t just ask what people want. :)

You can ask “would”
questions…but be careful

• Audience matters
• If you’re working with novice programmers or non-programmers…

• “What would you like to automate that you don’t automate right now?”
• “What would you do if you had 100 interns for the next three months?”

• And programmers aren’t great at “would” questions either…
• “What would make this programming environment better?”

• “This menu is in a bad place, this font is too small, this pane should be on the other side…”
• It’s not that no one should be collecting this feedback or that we shouldn’t solve problems

like these. But if you’re in this class, I suspect this isn’t the class of user input you’re seeking!
• And remember that these questions are for revealing hopes and dreams, don’t necessarily

reflect how they’d actually act
• But difference between actions and hopes/dreams can be revealing!

This question is my
number 1 trick for
getting to useful
conversations in

discussions with social
scientists when I don’t

have time for a full
contextual inquiry
process with them!

Assignment 2: Show, Don’t Tell
• Assignment 2

• If not for the global pandemic, I’d definitely be asking you to go out in the world and watch people do
their work in context! Don’t let the design of Assignment 2 make you think an interview is a substitute for
that process…

• During the Assignment 2 work time, see if you can find a way to make your video meeting not about an
interview but about watching them do their work/hobby/task that you want to study, with occasional
interruptions for you to learn about what they’re doing.
• If their task is computer-based, can they screen share?
• If their task is non-computer based, can they point the camera at it?

• Suggested structure:
• Describe the kinds of tasks you’re interested in learning.
• Ask the participant to teach/show you how they do those tasks. Interrupt when something happens

that you don’t understand.
• In the last 10 or 15 minutes, run your observations by the participant to see what you got right or wrong

about their process.
• Also highly encourage reading Thursday’s reading before finalizing your design!

