
Efficient Implementation of the Plaid Language

Sarah Chasins
Swarthmore College, Carnegie Mellon University

schasi1@cs.swarthmore.edu, schasins@andrew.cmu.edu

Abstract
The Plaid language introduces native support for state ab-
stractions and state change. While efficient language imple-
mentation typically relies on stable object members, state
change alters members at runtime. We built a JavaScript
compilation target with a novel state representation, which
enables fast member access. Cross-language performance
comparisons are used for evaluation.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Optimization

General Terms Languages

Keywords Plaid, states, state change

1. State-Based Languages
Consider a simple file object. When it is open, it has read
and close methods. When it is closed, it can only be opened.
In essence, this single file object has the methods of two
distinct classes during these different phases of its use. Yet
in typical object-oriented languages, this state information is
never directly expressed.

The Plaid language introduces a model in which object
state is made explicit[2] [4]. The practice of maintaining
implicit state information is pervasive in program design,
whether in the case of a simple file or in objects composed
of six states simultaneously, or even nested states. By intro-
ducing abstract states and explicit state change, Plaid makes
these transitions salient to users, facilitating code that depicts
object structure more clearly. Without the need to write one’s
own state checks, code is neater and more compact. Further,
where programmers forget to write state checks, the runtime
can indicate that a member is unavailable, rather than permit
continued execution and possible data corruption.

In Listing 1, simple Plaid code lays out the design of
a File state. OpenFile and ClosedFile are substates of

Copyright is held by the author/owner(s).
SPLASH’11 Companion, October 22–27, 2011, Portland, Oregon, USA.
ACM 978-1-4503-0940-0/11/10.

File; method close uses the <- operator to cleanly tran-
sition between them. Though state check elimination may
seem trivial in the case of a file with two states, the advan-
tages are clear in the context of a more complex state space.

1 state File {
2 val filename; }
3 state OpenFile case of File {
4 val filePtr;
5 method read() {}
6 method close() { this <- ClosedFile;} }
7 state ClosedFile case of File {
8 method open() { this <- OpenFile;} }

Listing 1. Plaid declaration of File state and two substates.

2. Implementation
While maintaining state and permitting state change is ex-
cellent from the perspective of a programmer, the challenges
for implementation are significant. A Java implementation
of Plaid has already been created. However, it relies heavily
on inefficient reflection. At runtime, every representation of
a Plaid object contains a map of members, and each member
is itself an object. Method calls require finding the member
in the map, and then calling a method on the member object,
which is essentially a container for the body of the function.
Performance is unsurprisingly slow.

In formulating a new implementation, JavaScript was a
natural target for compilation. As a prototype-based lan-
guage with first-class objects, it shares some features with
Plaid that make translation from one to the other clear and
intuitive. Given the language’s current ubiquity on the web,
a JavaScript implementation of Plaid should be useful, and
given the carefully optimized virtual machines, a JavaScript
implementation should be fast.

The central design question at this juncture was the matter
of how to represent a Plaid object in JavaScript, taking into
account the conflicting demands of member usage and state
transitions. Efficient member access requires that all meth-
ods and fields be part of a single Javascript object. How-
ever, efficient state change would most naturally be imple-
mented by storing members in multiple objects. With only
naive solutions in mind, decreased efficiency in one realm
seems bound to accompany improved efficiency in the other.

An intuitive representation entails maintaining a JavaScript
object for each state and substate: one for File, another for



OpenFile, another for ClosedFile. Pointers to the states
that currently compose the Plaid object would render state
change a simple process. However, consider that a file will
commonly be opened once, read many times, and closed
once. It is easy to bring to mind many such examples, and it
is a rare program that will require more state transitions than
method calls or field reads. This being the case, it is essential
that member access be fast.

The need for fast method calls and field lookup moti-
vates an alternative approach, one that places members at
the level of the JavaScript instance object. That is, any mem-
ber of a Plaid object must be a member of the JavaScript
object that represents it. If JavaScript object f represents a
File in the OpenFile state, a call to read should produce
the code f.read() at runtime, rather than trigger a search
through File and OpenFile objects. However, with this ac-
complished, how can state change be enacted? When one
case of state is removed and another added, how is the run-
time to identify the appropriate modifications?

Maintaining a metadata field within JavaScript represen-
tations of Plaid objects yielded a solution. A tree details all
current states, the members associated with them, and their
relationships to each other. State change entails a traversal
of the current and target trees – in accordance with Plaid
semantics [4] – to identify members to be altered. With
JavaScript’s first-class treatment of objects, it is trivial to up-
date members. If f is an object, the code delete f.close

removes member close. The code f[open]=fileOpen sets
the open member of f to fileOpen, whether it is a variable
or a function. With member revisions completed, a metadata
update completes the process.

3. Preliminary Results
To evaluate the performance of this implementation, we
translated the Splay and Richards benchmarks from the V8
JavaScript benchmark suite1 into Plaid. These Plaid bench-
marks were compiled to JavaScript, after which the resultant
code was timed alongside the original V8 JavaScript ver-
sions, the results of which appear in the first two charts of
Figure 1. These preliminary results – produced with a still
non-optimizing compiler – reveal a range of slowdowns,
from a 158.4% increase in Splay running time, to a 768.8%
increase in Richards running time.

Even with the current naive compilation strategy, the
JavaScript compiler far surpasses the performance of the
pre-existing Java compiler, as is evident in the third chart
in Figure 1. Our implementation produces code that runs in
2.1% the amount of time required by the compiled Java code,
with an average running time of 76,279.4 milliseconds for
the Java Richards, and an average running time of 1,566.5
for the JavaScript Richards. As planned optimizations move
forward, the performance of the JavaScript compiler should
compare even more favorably.

1 http://v8.googlecode.com/svn/data/benchmarks/v6/run.html

0

800

1600

2400

3200

4000

4800

5600

6400

7200

JS Plaid->JS

R
u

n
n

in
g 

Ti
m

e
 in

 M
ill

is
e

co
n

d
s

Splay

0

20

40

60

80

100

120

140

160

180

JS Plaid->JS

Richards

0

10000

20000

30000

40000

50000

60000

70000

80000

Plaid->Java Plaid->JS

Richards

Figure 1. Average running times and the standard deviations
appear above. To compare JS to compiled JS, each benchmark
was run 500 times in SpiderMonkey. To compare compiled Java
to compiled JS, each benchmark was run 100 times within a loop.

4. Contribution
Substantial work has gone into optimizing compilation for
dynamically typed languages, and early Scheme [1] and Self
[3] innovations continue to furnish valuable insights. As lan-
guages like Python and Ruby meet with steadily greater suc-
cess, the importance of such work is only growing. It is in de-
veloping state change that Plaid introduces a new challenge
for implementation, one that has not yet been addressed in
the field. If this research successfully optimizes state change,
it will be the first implementation to do so. This will be an
important step in establishing state-based languages’ useful-
ness for practical purposes, and in making state abstraction
a viable option for language users and designers.

5. Future Work
There remain many pressing questions on the topic of how
to efficiently compile a language that supports state change.
This research will go on to investigate further refinements of
the JavaScript implementation. However, additional future
work will center on implementations for target languages
without prototype support – for instance, a traditional object-
oriented language like Java. With classes able to inherit
members from only a single superclass, how can a Plaid
state be created as a composition of two other states? How
can states be allowed to transition, and their members with
them? While slow solutions come readily to mind, efficient
ones do not. These and many other questions will provide
fertile ground for continued research.

References
[1] N. Adams, D. Kranz, R. Kelsey, J. Rees, P. Hudak, and J. Philbin,

ORBIT: an optimizing compiler for scheme, In Proc. Symposium on
Compiler Construction, 1986.

[2] J. Aldrich, J. Sunshine, D. Saini, and Z. Sparks, Typestate-oriented
Programming, In Proc. Onward, 2009.

[3] C. Chambers and D. Ungar, Making pure object-oriented languages
practical, In Proc. OOPSLA, 1991.

[4] J. Sunshine, K. Naden, S. Stork, J. Aldrich, and E. Tanter, First-Class
State Change in Plaid, In Proc. OOPSLA, 2011.


